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Pathology and laboratory medicine are currently experiencing paradigm 
shifts that are likely to influence how our specialty is practiced in the not-too-
distant future. Technical innovations in immunohistochemistry, molecular 
pathology, and pathology informatics are driving the acquisition of many 
new and exciting data. That phenomenon may well increase the quality and 
scope of the diagnostic information being provided by laboratory assays. 
Simultaneously, however, as new technologies invariably increase the cost of 
medical testing, considerable pressure has accrued concerning financial con-
tainment. Thus far, advocates of “the most, the newest, and the best, regard-
less of cost” have largely prevailed. Nonetheless, it is likely that in the near 
future, there will be considerable movement toward a strict, cost-effective 
utilization of laboratory resources that is centered on clinical value and direct 
applicability of test results in regard to individual patient care.

As practicing pathologists, it has been our impression that there is a great 
interest in the generation of new data and the exploration of clinical applica-
tions for new technologies. At the same time, as a group, we do not often 
pause to consider how well we are performing certain tasks, and how well we 
fulfill our charges as members of clinical teams that care for individual 
patients. Residency education in pathology and laboratory medicine tends to 
emphasize the acquisition of morphology-based diagnostic skills and infor-
mation on various laboratory tests. Nonetheless, interest has been limited in 
teaching future pathologists to understand the pros and cons of various diag-
nostic models; critically evaluate the contents of medical publications; sift 
through apparently conflicting information; integrate data from divergent 
sources; effectively combine the medical literature with personal experience; 
and practice pathology in a cost-effective manner that does not compromise 
quality or waste resources.

Internal medicine and other medical specialties have confronted similar 
issues. They have supported the development of an analytical approach to the 
evaluation and use of medical information, under the rubric of evidence-based 
medicine (EBM). That term is somewhat fustian, because it appears to imply 
that other modes of medical practice are not “evidence-based” or objective. 
Advocates of EBM have explored the advantages and disadvantages of dif-
fering study designs; emphasized the advantages of gathering data through 
randomized clinical trials; classified medical data in terms of evidence-levels; 
advocated the use of standardized guidelines for clinical care; and stressed the 
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use of a patient-centered approach to diagnosis and treatment. Some of those 
concepts have generated considerable resistance from the medical commu-
nity at large, in part because EBM tends to deride case reports or small case 
series as anecdotal or inferior. Opponents of EBM have suggested that it leads 
to “cookbook medicine” and de-emphasizes clinical experience and the art of 
medicine. They have also pointed to the practical limitations of randomized 
clinical trials as a gold standard for the collection of medical information.

A debate continues between advocates of EBM and other physicians 
who favor more individualized case-based approaches to medical practice. 
However, regardless of that schism, the current trend toward EBM has pro-
vided a valuable service by emphasizing the importance of reliably produced 
data and suggesting how to best apply it to individual patient care.

In this volume, we explore the application of selected EBM concepts to 
anatomic pathology and laboratory medicine, embodied in a model that we 
have dubbed as evidence-based pathology (EBP). This book is unusual in the 
specialty of pathology, because it is not designed to provide readers with the 
means to diagnose specific lesions in biopsies or interpret particular labora-
tory tests. Rather, its intent is to discuss a variety of epistemological and 
practical issues, and to stimulate thoughts on how well we are doing in prac-
ticing truly scientific medicine as pathologists. Another focus is the contrast 
between rapidly accruing new technologies and health system-related pres-
sures for cost containment.

This monograph addresses two general topics. One concerns a description 
of problems that occur in applying EBM to laboratory medicine, and the other 
considers available resources and possible modes of implementing EBP. The 
first section of the book includes chapters discussing evidence levels, best 
evidence, and other basic EBM concepts. This is followed by other material 
that concerns statistics. It does not attempt to teach the intricacies of various 
statistical tests, but instead is intended to familiarize readers with the basis of 
the probabilistic thinking that underlies the specific applications of such 
 analyses. The use and misuse of pathological data for prognostication and 
prediction in anatomic pathology is discussed in detail, and the technique of 
meta-analysis is also summarized. The statistical discussion in this book is 
followed by three chapters that discuss the principles of classification and 
diagnosis in anatomic pathology, the general evaluation of oncopathological 
studies, and medical decision-making.

The second section of the book includes various solutions to problems 
in anatomic pathology and laboratory medicine that are offered by EBP. 
It includes chapters concerning evaluation of the medical literature; a discus-
sion of how EBP might help advance histopathology in the future; an evalu-
ation of diagnostic errors; the use of meta-analysis to investigate unusual 
diseases and select immunohistochemical tests; a consideration of the use of 
molecular tests in hospital practice, the application of tools for decision anal-
ysis in laboratory medicine; cost-benefit analysis in the hospital laboratory; 
and medicolegal aspects of EBP.

We sincerely thank all of our contributors for their willingness to partici-
pate in this project, and we hope that readers will be stimulated by the con-
cepts that are discussed in this book. It is our wish that greater awareness of 
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the value of EBP will engender more comprehensive and explicit  guidelines 
for publications in pathology. EBM also has the ability to improve education 
in pathology; stimulate the future development of objective and reproduc-
ible guidelines for the practice of pathology; and further the longstanding 
 identity of pathologists as physicians who provide intellectual leadership for 
their colleagues.

Los Angeles, CA  Alberto M. Marchevsky, MD
Charlottesville, VA Mark R. Wick, MD
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Evidence-based medicine (EBM) has been defined 
as “the conscientious, explicit, and  judicious use 
of current best evidence in making decisions 
about the care of individual patients” or as “the 
integration of best research evidence with clini-
cal expertise and patient values” [1–3]. It is an 
evolving discipline that applies analytical and 
quantitative methods to evaluate the validity of 
available  medical information, with the overall 
goal of identifying scientifically sound data or 
“best evidence.” This evidence is integrated to 
improve medical practice through clinical guide-
lines and other tools that are used for education, 
standardization of care, quality initiatives, and 
coverage decisions [4, 5]. The ideas of EBM 
have spread rapidly through medicine during the 
past decade and are recently eliciting a growing 
interest in Anatomic Pathology and Laboratory 
Medicine [6–8].

Environment that Created the Need 
for Evidence-Based Medicine

Traditional medical practice has been based on 
the fundamental assumption that physicians edu-
cated through rigorous medical school courses, 
postgraduate training programs, continuing edu-
cation activities, journals, personal experiences, 
and interaction with colleagues are well equipped 
to consistently render correct diagnoses and do 
the right things for their patients. Individual phy-
sicians are expected to integrate complex infor-
mation through “clinical judgment” or the “art of 
medicine” [6]. Decisions about the need for 
insurance coverage, medical necessity, and “stan-
dards of practice” are generally defined by the 
loose standard of “if the majority of physicians 
are doing it, it must be necessary, it should be 
covered and it is clinically useful” [9]. The use of 
more formal analytical methods and mathemati-
cal models to identify solutions to these questions 
has been mostly limited to research projects.

Research in the 1970s and 1980s documented 
several major flaws in these fundamental assump-
tions and stimulated an increasing focus on “tech-
nology assessment” [9]. For example, the United 
States Congressional Office of Technology 
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Assessment of the Institute of Medicine empha-
sized as recently as the early 1980s the need to 
develop well-designed studies to evaluate tech-
nologies [10, 11]. Well-planned prospective ran-
domized clinical trials (RCT) demonstrated that 
certain common practices, such as the use of anti-
arrhythmic drugs to prevent heart attacks, lacked 
good evidence to support their usefulness and 
could be harmful to patients [12]. Few clinical 
guidelines were available at the time, but in the 
mid-1980s, an increasing interest in “outcomes 
research” led to the development of a large num-
ber of clinical trials and “evidence-based” guide-
lines that have recently grown into the thousands 
[13–16].

Medical data proliferate at an ever-increasing 
rate and often include a variety of features that 
are far too complex, uncertain, or even contra-
dictory for analysis using simple “If–Then” 
logic. These problems have led to a deeper appre-
ciation for the need to incorporate computer-
based analytical methods that are more widely 
used in other disciplines such as epidemiology, 
engineering, and business [6, 17–21]. They 
include various analytical tools of Decision 
Analysis theory such as decision trees, utility 
theory, and Bayes theorem that can be used to 
estimate the validity of diagnostic tests, perform 
cost-effectiveness analysis, analyze with meta-
analysis the effectiveness of various interven-
tions, render more consistent and effective 
decisions that affect the welfare of individual 
patients, and evaluate the effectiveness of the var-
ious paradigms used in medical care [6, 18–21].

Evolution of Evidence-Based 
Medicine into a Well-Established 
Discipline

EBM evolved as a discipline in the United States, 
Canada and the UK in the 1990s and is already a 
well-established discipline that is now taught in 
many medical schools, through graduate programs, 
books, and other educational resources [5, 22, 
23]. The American College of Physicians (ACP) 
developed the Clinical Efficacy Assessment 

Project in 1981 to promote the use of literature 
reviews and guidelines for various topics [24]. The 
American Cancer Society has sponsored the devel-
opment of Evidence-Based Guidelines (EBG) for 
specific diseases using the following general con-
cepts: “First there must be good evidence that each 
test or procedure recommended is medically effec-
tive in reducing morbidity or mortality; second, 
the medical benefits must outweigh the risks; third, 
the cost of each test or procedure must be reason-
able compared to its expected benefits; and finally, 
the recommended actions must be practical and 
feasible” [6, 25–27]. Several centers have been 
dedicated to the development of medical practice 
guidelines based on “best evidence,” such as the 
Cochrane collaboration in Oxford, the Centre for 
Evidence-Based Medicine at Oxford University, 
Cancer Care Ontario in Canada, the National 
Guideline Clearinghouse sponsored by the Agency 
for Healthcare Research and Quality (AHRQ), 
and others [16, 28, 29]. AHRQ has also promoted 
EBM-based research and policies and the devel-
opment of Evidence-based Practice Centers to 
produce reports and technology assessments [28]. 
A wealth of books and other publications about 
EBM and its applications to a variety of subjects is 
available. For example, the British Medical 
Journal publishing group launched various jour-
nals available online: “Clinical Evidence,” 
“Evidence Based Medicine,” “Evidence Based 
Mental Health,” “Evidence Based Nursing” to 
publish EBM type studies. The concepts of EBM 
have also spread beyond EBG into “evidence-
based coverage,” “evidence-based performance 
measures,” and policies regarding quality improve-
ment, medical necessity, and regulations.

Evidence-Based Medicine as a New 
Approach to Teaching the Practice  
of Medicine

The Evidence-based Medicine Working Group 
proposed in 1992 the use of EBM as a new 
approach to teaching the practice of Medicine 
[1–4, 12]. The emphasis was on individual physi-
cians collecting computerized literature searches 
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looking at the sensitivity and  specificity of tests, 
selecting a test, assigning a pretest probability, 
calculating a posttest probability, and developing 
a management plan. The terminology of evi-
dence-based individual decision-making or EBID 
has been proposed.

Basic Concepts of Evidence-Based 
Medicine

How is the Use of Medical Information 
Approached from the Standpoint  
of Evidence-Based Medicine?

EBM investigators attempt to identify the best 
current and relevant research information avail-
able for a particular problem and to integrate it 
into guidelines, rules, or other tools that will assist 
medical practitioners in their daily practice. 
Sackett and associates have suggested the use of 
five steps for the identification of “best evidence” 
and its integration with personal clinical expertise 
and values into guidelines, rules, or other proto-
cols that can be used for the care of individual 
patients (Table 1.1) [1–4, 12]. Richard Gross sum-
marizes the first four steps of Sacket et al., using 
the acronym “FRAP” – framing evidence-based 
questions, retrieving relevant evidence, appraising 
the quality and appropriateness of the evidence, 
and patient-based decision-making [22].

Basic Process for the Identification of 
Best Evidence and Its Integration into 
Guidelines, Rules, or Other Protocols

 1. Formulation of specific questions regarding 
the diagnosis, prognosis, causation, and/or 
treatment of a patient with a particular clini-
cal problem

  Evidence-based questions ideally attempt to 
address those issues that are most relevant to 
the materials being studied [1, 3–5]. These 
questions need to address a detailed query 
whose answer will provide useful and practi-
cal  information for patient care. For example, 
if a pathologist is interested in comparing the 
results of the immunostains of a particular 
neoplasm, the summary of evidence from the 
literature would need to include specific ques-
tions such as: Which tissues were studied? 
What percentage of cells was used as a thresh-
old for positive immunoreactivity? How where 
the changes quantitated or semiquantitated? 
What structures exhibited immunoreactivity? 
What antibodies were used? Did the study 
report the use of proper controls? What  dilutions 
were used? What sensitivities and  specificities 
were reported? Were the results compared with 
appropriate statistical tests? Did the study have 
sufficient power to detect significant differences 
in immunoreactivity? Table 1.2 lists examples 

Table 1.1 Evidence-based medicine approach to the use 
and evaluation of information in daily practice

Formulation of specific questions regarding diagnosis, 
prognosis, causation, and/or treatment of any given 
clinical problem
Search for specific information in the scientific 
literature
Critical appraisal of the validity of the evidence, and its 
impact, applicability, and usefulness in clinical practice
Incorporation of “best evidence” from several 
“reliable” sources along with personal clinical 
experience, for the development of “Evidence-based” 
guidelines, rules, or other protocols
Evaluation of the effectiveness and efficiency of those 
recommendations

Table 1.2 Queries proposed for the assessment of 
 “prognostic” information in the context of evidence-based 
medicine

Is the evidence valid?
Was the sample of patients assembled at the same 
point of the disease?
Can it be applied to individual patients?
Was the follow-up period sufficiently long and 
complete?
Were the results validated with a group of test 
(holdout) cases?

Is it important?
How likely are the outcomes over time?
How precise are the prognostic estimates?

Are the patients in the study being referred to similar to 
those of the physician using the evidence?
Will the evidence in hand have a significant impact in 
managing the disease in question?
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of questions suggested by Sackett and col-
leagues to be considered in the assessment of 
studies that report “prognostic” information.

 2. Search for specific information in the scien-
tific literature

  Hundreds of electronic bibliographic databases 
are currently available online. MEDLINE/
PubMed is probably the database most familiar 
to pathologists, but it does not identify all known 
published RCT [30–32]. Other online data-
bases include Cancerlit, Embase, “CENTRAL,” 
developed by the Cochrane collaboration, MD 
Consult, UpToDate, Micromedex, STAT!Ref, 
SKOLAR MD, Australasian Medical Index, 
Chinese Biomedical Literature Database, 
Latin American Caribbean Health Sciences 
Literatures (LILACS), Japan Information 

Centre of Scientific and Technology File on 
Science, Technology and Medicine (JICST-E), 
AIDSLINE, SciSearch, TrailsCentral, and 
many others. Subscription-based lists of EBM-
based guidelines such as EBMG and Web of 
Science are also available online (Figs. 1.1 
and 1.2) [33–35].

Such a bewildering array of information 
sources has stimulated the development of 
better search engines that apply more advanced 
methods than simple Boolean searches based 
on the analysis of previously indexed infor-
mation [36–39]. For example, the developers 
of the widely used web search engine Google 
have recently sponsored the development of 
Google Scholar to automatically analyze and 
extract citations from a variety of “scholarly” 

Fig. 1.1 Although pathologists are most familiar with 
the search engine Pubmed of the National Library of 
Medicine, there are other online services to retrieve scien-

tific references. This figure shows the web page of 
Essential Evidence Plus, sponsored by a publisher, Wiley-
Blackwell



71 Introduction to Evidence-Based Pathology and Laboratory Medicine

literature and present them as separate results 
search even if the documents they refer to 
are not online [36–39]. The results of each query 
are organized by how relevant the information 
is to the query, using proprietary algorithms.

 (a) Best-evidence summaries
  Various formats have been proposed to sum-

marize the “best evidence” into “evidence 
summaries” that include, in addition to the 
answers to the specific questions, information 
about the sources of the selected evidence, 
methods used for selection, estimates of preci-
sion and reliability, and other important details 
[5, 22]. Multiple Practice Guidelines and 
Evidence summaries have been developed by 
various organizations and are readily available 
online. For example, the web site of Cancer 
Care Ontario makes available a variety of 
Practice Guidelines and Evidence Summaries by 
disease site (Fig. 1.3) [40]. These documents 
generally list the dates of the original guide-
lines and subsequent updates, the guideline 

questions, the target population, description of 
methodology, recommendations, key evidence, 
related guidelines, and key contacts for further 
information. The Cochrane Collaboration also 
makes available online an EBM manual sum-
marizing a variety of interesting topics and 
numerous guidelines published using a com-
mon format (Fig. 1.4) [41, 42]. To our knowl-
edge, there are no such EBM-based Practice 
Guidelines and Evidence Summaries in 
Pathology. The Association of Directors of 
Anatomic and Surgical Pathology, the Cancer 
Committee of the CAP, and other groups have 
published “recommendations,” “cancer proto-
cols,” and other documents that provide guide-
lines to practicing pathologists (Fig. 1.5) 
[43–46]. These documents have been devel-
oped by committees or other groups of experts, 
based on their experience and understanding of 
the “current state of the art,” rather than the 
more analytical process followed by the propo-
nents of EBM.

Fig. 1.2 Web page of another specialized search engine to retrieve scientific references, ISI Web of Knowledge. This 
search engine and the one shown in Fig. 1.1 are available only through individual or institutional subscriptions
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 (b) Text data mining for the automated analysis of 
natural language texts

  A vast amount of information is available on 
the Web, textbooks, and other formats in 
unstructured text written in the natural lan-
guage form [33–35, 39]. There is an increas-
ing interest in computer science at developing 
tools to “mine” textual information with tools 
that can navigate text bases, creating summa-
ries of documents, cluster them, and carry out 
semantic retrieval of information using neural 
network tools and other “intelligent” agents. 
Novel software tools such as TextAnalyst 
(Megaputer, Inc.), SAS TextMiners (SAS, 
Cary, NC), and others provide interesting tools 
for the future automated analysis of data avail-
able in pathology reports and other  repositories 

of documents. Multiple online resources are 
available listing software, books, and other 
resources for text mining.

 3. Critical appraisal of the validity of the avail-
able evidence, and its impact, applicability, 
and usefulness in clinical practice

 (a) Statistical significance: Type I and II statisti-
cal errors

  The quality and appropriateness of medical 
evidence is generally assessed with quantita-
tive tools that are well known by clinical 
pathologists and some anatomic pathologists 
[47–51]. The purpose of most research proj-
ects is to search for “statistically significant” 
evidence that the value of a parameter in a 
population of interest is different from the 
value of this feature in a control group [6, 26]. 

Fig. 1.3 Web site of Cancer Care Ontario showing the CCO toolbox with various practice guidelines. Other institutions 
in multiple countries offer similar evidence-based practice guidelines



Fig. 1.4 Web site of the Cochrane collaboration, an international institution that has been a pioneer in the development 
of evidence-based guidelines

Fig. 1.5 The web site of the College of American Pathologists makes available numerous cancer protocols and check-
lists that are now being used in daily practice by most American pathologists
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The basic assumption that there would be no 
significant difference between these two 
 values is termed the “null hypothesis” [51]. 
The results collected in a study from the group 
of cases of interest are compared with those of 
the reference control group using the t-test, 
ANOVA, chi-square, and/or other appropriate 
descriptive statistical tests. If the p-value of a 
parameter measured from a study group is sig-
nificantly different from the value in the con-
trol group by a p value smaller by some 
arbitrary cutoff value, such as p < 0.05, the null 
hypothesis is rejected in favor of the alterna-
tive [6, 51]. A p < 0.05 value indicates that 
there is a 5% probability that the null hypoth-
esis was rejected by spurious factors other 
than those being tested in the study. This type 
of error is classified as the type I error in sta-
tistical textbooks.

An additional important potential source of 
error that is seldom given consideration in 
observational studies in pathology is whether 
the research study was designed with enough 
“power” to reject the null hypothesis when it 
is appropriate to do so [51]. Type II statistical 
error is the probability that the test in question 
will erroneously fail to reject the null hypoth-
esis when the latter is true. For example, the 
fact that a particular study fails to establish a 
statistically significant difference between 
immunoreactivity for a particular epitope in 
two different groups of cases may be biased 
by the characteristics of the staining proce-
dure, staining selection, sample size, variabil-
ity of the data, and other variables. Several 
“power analysis” statistical tests have been 
designed to estimate for the probability of type 
II errors in scientific studies and are used rou-
tinely in RCT and in other scientific studies, 
but have seldom been used in observational 
studies by anatomic pathologists [52, 53]. 
A value of power = 0.80 or higher is generally 
recommended.

Statistical calculations that have been used 
in laboratory medicine studies include mea-
sures of sensitivity, specificity, negative and 
positive predictive values, likelihood ratios, 
receiver-operator curves, misclassification 

rates, and others [54, 55]. These tests provide 
good information about potential type I sta-
tistical errors, but do not include “power” 
analysis to analyze for possible type II errors. 
Sensitivity is the proportion of patients with a 
disease who have a positive test, whereas 
specificity is the proportion of true negatives 
of all the negative samples tested. The posi-
tive predictive value of a test is the proportion 
of patients with a positive result who actually 
have the disease, while negative predictive 
value is represented by the proportion of 
patients with a negative test who are actually 
free of disease. Likelihood ratio (LR) associ-
ated with a positive test calculates the proba-
bility that the finding is seen in diseased 
patients, divided by the probability that is 
present in healthy people; the posttest odds of 
disease are equal to the pretest odds of dis-
ease multiplied by the LR.

 (a) Bayesian approach to the analysis of data: 
influence of prior probability of a finding and 
need to study “holdout” data to verify the 
results of a study

  The statistical tests listed above offer limited 
information about other features that can 
influence the outcome of observational stud-
ies, such as the prevalence of a disease within 
the population study and in the control group 
and the prior probability of a finding [56–60]. 
For example, the sensitivity of the AFB test in 
cases with caseating granulomas is probably 
better than in cases without granulomatous 
disease, as the pathologist is likely to examine 
more carefully the slides from cases that 
exhibit pathological findings that are known 
to be caused by mycobacteria. The prior prob-
ability of a finding can be simplistically 
defined as the probability that it is present in 
the control group. The prior probability for a 
particular finding can change dramatically the 
significance of the results of a particular study. 
For example, it is well known that lymph node 
status has a statistically significant prognostic 
significance in most patients with cancer. 
However, in patients with Stage IV neoplasms 
who have a high “prior probability” of dying 
from their disease, the prognostic value of the 
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feature lymph node status is probably rather 
limited. Likewise, the value of certain immu-
nophenotype for the determination of the site 
of origin of a neoplasm is also probably quite 
variable, dependent on what other clinico-
pathologic information is available [61]. For 
example, an adenocarcinoma within a medi-
astinal lymph node that exhibits negative 
immunoreactivity for TTF-1 has, in our expe-
rience, a higher prior probability of represent-
ing a metastasis from a lung cancer than from 
an extrathoracic neoplasm with similar histo-
logical features. The “prior probability” of 
this assessment is probably a lot higher if the 
patient also has a single lung mass on chest 
imaging studies and a positron emission 
tomogram (PET) that shows only a positive 
lung mass. These considerations are intui-
tively used in daily practice by most patholo-
gists, but there are few, if any, available EBG 
or other protocols that take into consideration 
the prevalence and prior probability of vari-
ous findings into the selection and/or interpre-
tation of immunostains or other ancillary tests 
in Anatomic Pathology.

Another consideration that has not been 
addressed in most observational studies in 
pathology is the need to divide the data into 
“training” or “testing” sets (“study” and “hold-
out” cases) in observational studies attempt-
ing to derive classification or prognostic 
models [57, 59, 62]. Most clinico-pathological 
categorization has been based on data derived 
from analyzing the data from study groups 
and control groups with descriptive univariate, 
and less often multivariate, statistical  methods. 
However, multiple studies using Bayesian 
methods have shown that models derived by 
the use of 100% of a dataset are not necessar-
ily robust when applied to other datasets, as 
there is a certain element of “circular reason-
ing” in the modeling methodology. EBM 
emphasizes the value of RCT, of using pro-
spective and retrospective data, and the need 
to compare the results from a study set with 
those of an “unknown” set that has not been 
used for the derivation of the classificatory 
model [1, 2, 15, 63, 64]. As discussed later on 

in this article, scientific papers using the latter 
methodology are given a higher value of cred-
ibility. To our knowledge, there have been few 
attempts to apply this methodology to most 
classification schema being used in Surgical 
Pathology and Cytopathology, perhaps pro-
viding an explanation for the high interob-
server variability of certain diagnoses.

 (b) Interobserver variability: assessment with 
kappa statistics and effect on the interpreta-
tion of observational studies

  It is well known that the diagnosis of various 
neoplasms and nonneoplastic conditions using 
histopathology is subject to a certain degree of 
interobserver variability [65]. For example, 
lung pathologists can disagree in the classifi-
cation of about 30% of certain neuroendocrine 
pulmonary neoplasms and 50% of poorly dif-
ferentiated nonsmall cell lung carcinomas 
[65–67]. This variability can be measured with 
the so-called kappa statistics that estimate the 
proportion of chance versus expected agree-
ments taking into consideration the fact that 
the raters and the samples are not independent 
from each other [68–72]. Kappa coefficients 
of 0.8 or higher are considered as good agree-
ment rates. This methodology has been used 
mostly in cytopathology and in some surgical 
pathology and other studies.

However, little consideration has been gen-
erally given to the influence of interobserver 
variability in the assessment of the reproduc-
ibility of certain classification schema in 
Anatomic Pathology and the prognostic and 
predictive value of selected observations. For 
example, in a situation when pathologists have 
difficulties distinguishing small cell carci-
noma, atypical carcinoid tumor, and nonsmall 
cell carcinomas of the lung in about a third of 
the cases, and the 5-year survival proportions 
for patients with these neoplasms vary from 0 
to 50%, what would be the statistical “power” 
of a study needed to determine whether all 
these diagnostic categories have independent 
prognostic or predictive value? Could 
other stratification of the cases into categories 
such as “high-grade neuroendocrine carcino-
mas” and “atypical carcinoid” provide better 
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 discriminatory data? To our knowledge, there 
is no “best evidence” in the pathology litera-
ture to answer these questions. Another exam-
ple could be a hypothetical situation where 
pathologists agree less than 100% of the time 
whether a resection margin is involved or not 
by a neoplasm and subsequent resection spec-
imens detect residual tumor in a slightly 
smaller proportion of the patients who had 
negative margins than those with initially pos-
itive margins. How can we determine whether 
reexcision is a valuable procedure based on 
this “evidence”? How many cases would be 
needed to study this question with sufficient 
power? Could there be some definition of 
“positive” margin that would decrease the rate 
of interobserver variability, changing the 
parameters used for the evaluation of this 
problem? Future studies that address this type 
of practical problem with methodology that 
takes into account some of the analytical con-
cepts being promoted by practitioners of EBM 
may improve the precision of specimen-
derived data.

 4. Incorporation of “best evidence” from several 
reliable sources along with personal clinical 
experience into “evidence-based” guidelines, 
rules, or other protocols

 (a) Evaluating the quality of published studies in 
the medical literature

  The medical literature includes many descrip-
tive studies that include single case reports, 
large observational analyses involving many 
patients, and scientific studies in which a 
hypothesis is tested prospectively with appro-
priate controls [6, 26]. Observational studies 
are definitely valuable, but they suffer from 
biases owing to case selection, reporting 
methods, characteristics of control groups 
(“healthy cohort effect”), and other factors 
listed in Table 1.3 [1, 2, 4, 16, 73]. EBM stud-
ies also are influenced by “publication bias.” 
Although pathologists frequently have a lim-
ited ability to control all these possible sources 
of bias in their observational studies, EBM 
does raise interesting questions about study 
design and interpretation of the data that could 
lead to better future approaches to the use of 

“specimen-based” data in improved  diagnostic 
and prognostic models.

Ebell has proposed a system for classifying 
published medical evidence into four levels, 
with “grade I” being the best (most reliable) 
[23]. Grade I studies are those that include 
data validated with a “test” group that is from 
a different and distinct population from the 
“training” cohort. For example, a classifica-
tion or a prognostic rule might be developed 
in one group of patients and validated in 
another. Grade II studies report data that are 
obtained from the same population, the mem-
bers of which are divided into independent 
“training” and “validation” subsets and evalu-
ated prospectively. Grade III analysis also 
include “training” and “validation” subsets 
from the same population, but data are col-
lected contemporaneously rather than pro-
spectively. Grade IV studies are those in which 
the “training” group is also used as the “vali-
dation group.” According to this scheme, most 
studies in the pathology literature would prob-
ably be classified as Grade IV and are particu-
larly vulnerable to the problems listed in 
Table 1.3.

 (b) Integration of “best evidence” from the litera-
ture with personal clinical experience into 
“evidence-based” guidelines, rules, or other 
protocols

  As mentioned earlier, advocates of EBM have 
attempted to organize “best evidence” from the 
scientific literature and their own experience 

Table 1.3 Sources of bias in observational and other 
comparative studies

Selection bias (samples of convenience and others)
Sample size
Ratio between the number of observations and the 
number of variables
Characteristics of the control group (healthy cohort effect)
Performance bias
Attrition bias
Detection bias
Distribution of the data (normal vs. others)
Interpretation of the results
Lack of independent validation group
Publication bias
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into algorithms, protocols, guidelines, or 
“rules” that guide individual patient care by 
practitioners. Pathologists may benefit from 
emulating this approach, in future efforts at 
constructing “patient-based” prognostic and 
predictive models. For example, immunostains 
are most often used to distinguish between 
various neoplasms in a descriptive manner. 
Studies using immunostains in the pathology 
literature usually list the percentage of lesions 
that label for particular epitopes, as well as the 
sensitivity, specificity, and predictive values of 
such markers in narrow morphological con-
texts. However, few studies have assessed LR 
or other probabilistic measures as applied to 
panels of markers in selected differential diag-
noses [60, 74] . At an even more basic level, the 
relative statistical values attending particular 
morphological findings have seldom been ana-
lyzed in the same fashion, to our knowledge.

In contrast, several prognostic scoring 
models or “rules” that integrate multivariate 
pathological, clinical, imaging, and other 
information are being developed by other spe-
cialists [75]. For example, Kattan and associ-
ates have developed pretreatment nomograms 
[76] that combine clinical and pathological 
data from prostate cancer patients and predict 
5-year probability of metastasis .

 5. Evaluation of the effectiveness and efficiency 
of those “evidence-based” recommendations

  The fact that a scientific study has been pub-
lished in a peer-reviewed journal probably 
does not guarantee that the study design was 
methodologically sound, that the research 
was well conducted, the data analyzed cor-
rectly, and/or the results interpreted properly. 
Therefore, “evidence-based” information has 
become almost a “de rigueur” label in health 
care to convey a measure of credibility. 
However, as discussed recently by Steinberg 
and Luce, there is considerable variability in 
how information is been assembled, evalu-
ated, and synthesized in different EBM type 
studies [77]. Different systems have been 
proposed for rating the stability and strength 
of medical evidence and are discussed in 
Chapter 13. [78] .

What Has Been the Impact of EBM  
in Improving the Quality of Medical 
Practices in the United States?

EBG have had a limited success at improving the 
overall quality of Medicine in the U.S and has 
elicited somewhat of a backlash from practitioners 
revolting against “cookbook medicine” [79–83]. 
Organizations sponsoring EBG have at times 
struggled to maintain these guidelines current. 
Research into the daily practices of physicians 
has demonstrated that the wide availability of new 
scientific data and/or clinical guidelines using 
“best evidence” has had a rather limited effect in 
changing the behavior of medical practitioners. 
Somewhat surprisingly, it can take years for phy-
sicians to incorporate new information into their 
practices and change their approach to the diagno-
sis and treatment of individual patients.

Pathology and Evidence-Based 
Medicine

Interestingly, pathology has not been an active 
participant in the EBM “movement” in spite of 
being considered as one of the more “scientific” 
branches of Medicine and a long and proud his-
tory of providing strong leadership among med-
ical specialties in quality assurance and quality 
improvement issues [62]. Pathologists have 
faced to date limited scrutiny about the specific-
ity and the cost-effectiveness of multiple prac-
tices. For example, although it is well documented 
that there can be considerable interobserver 
variability in the diagnosis of various disease 
entities with histopathology, there have been 
limited attempts at developing formal EBG or 
diagnostic algorithms to standardize these prac-
tices and proficiency testing programs to assess 
the effectiveness of these efforts. There is cur-
rently little consensus about “standard of prac-
tices” for the use and interpretation of 
immunostains and other ancillary studies for the 
diagnosis of various diseases and for the devel-
opment of prognostic and predictive models for 
patients with various  neoplasms and nonneo-
plastic conditions. Pathologists have had limited 
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opportunities in the past to  provide input into 
schema such as the TNM  system  developed by 
the American Joint Commission on Cancer 
(AJCC) [43]. Indeed, some of the current stag-
ing guidelines lack specific definitional detail 
that could help to decrease some of the variabil-
ity in pathology practice. Most attempts at pro-
viding tools to improve the standardization of 
reporting information to practicing pathologists 
have been via published protocols developed  
by professional societies, such as the Cancer 
Protocols developed by the College of American 
Pathologists (CAP) or the Reporting Recommen-
dations by the Association of Directors of 
Surgical Pathology and Anatomic Pathology 
(Fig. 1.6) [43]. Those documents have been 
written by groups of pathologists appointed by 
these organizations for their subspecialty or 
other experience and are based on the semisub-
jective “authoritative” interpretation of current 
practices and available information by these 
individuals. This approach may be effective, 
but it is based on opinion rather than on “best 

evidence” taken from a systematic analysis of 
data collected from controlled studies. Moreover, 
there have been to our knowledge few attempts 
at evaluating whether practicing pathologists 
are using the elements suggested in these 
guidelines in their daily practice and in estimat-
ing the effectiveness of these recommendations 
and protocols for the improvement of patient 
outcomes.

The College of American Pathologists (CAP) 
has also sponsored several multidisciplinary “con-
sensus conferences,” in which groups of special-
ists in different medical fields convened to perform 
systematic reviews of the literature, discussed 
salient problems, selected “best evidence,” and 
proposed guidelines for their clinical management. 
These sessions have closely approximated the 
general idiom of EBM. More recently, the CAP 
has offered an EBM course at its annual meeting 
and the US and Canadian Academy of Pathology 
(USCAP) has sponsored a course on Evidence 
Based Pathology and Decision Analysis that is 
now available on line at http://www.uscap.org.

Fig. 1.6 The web site of the Association of Directors of Anatomic and Surgical Pathology (ADASP) also has multiple 
practice guidelines labeled as recommendations
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Evidence-Based Medicine  
in the Future of Pathology

The increased interest in EBM through the 
healthcare environment poses risks for Pathology 
and Laboratory Medicine. Physicians and 
healthcare administrators familiar with the 
methodology being used for RCT and other 
studies that evaluate the efficacy and cost-
effectiveness of selected procedures may decide 
that the utility provided by certain lab tests gen-
erated by either anatomic pathology or the clini-
cal laboratory is not supported by “best evidence” 
and should not be reimbursed. EBM also offers 
an opportunity to use some of the concepts and 
methods described in this book to reassess the 
clinical effectiveness of classification schema 
being used by pathologists and to develop better 
diagnostic and prognostic models, more rational 
approaches for test  selection, and better tools to 
evaluate the cost-effectiveness of various tests 
[25, 26, 84]. Examples of topics that could ben-
efit from an EBM approach include evaluation 
of whether certain “pathologic entities” are 
based on “best evidence” and/or provide clini-
cally valuable information, the development of 
EBG for the use and the interpretation of immu-
nostains and other ancillary tests for specific dif-
ferential diagnosis situations and for the 
selection and interpretation of laboratory tests in 
the context of specific clinical problems, evalua-
tion of the effectiveness of selected practices 
such as the use of synoptic reports and check-
lists versus narrative reports, assessment of the 
effectiveness of various teaching activities, and 
others.
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Of all the specialties in medicine, pathology, 
 particularly diagnostic anatomical pathology, has 
been relatively slow in embracing the practice and 
principles of evidence-based medicine (EBM). 
Two reasons for this are as follows. First, pathol-
ogy has been regarded for a long time as “the 
evidence” with respect to clinical inference. The 
classic clinico-pathological-correlation would fin-
ish with the pathologist lifting the veil from the 
hidden truth and providing the last word, often 
followed by a scholarly discussion of the science 
behind the disease. Second, pathologists involved 
in clinical care – particularly surgical patholo-
gists – are expected to  render a clear-cut diagno-
sis that will provide the basis for a therapeutic 
decision. Thus, there is a decisive moment in the 
clinic when there is little room for doubt, and it is 
easy to see why the  processes of EBM – which, to 
a great extent, consist in managing uncertainty by 
using evidence of high quality – have not been 
readily embraced by the surgical pathologist. This 
initial reluctance is, however, slowly transforming 

into acceptance: it is hard to claim that pathology 
is an essential part of the medical practice, but 
that it is off-limits to the critical analysis driven 
by the EBM proponents. Practice guidelines have 
progressively been introduced in the diagnostic 
work-up of tissue samples, and technological 
innovation has significantly altered diagnostic 
methods. New technologies being applied to 
cytological and tissue specimens demand EBM 
not only at many points in the course of their 
development but also in their final application to 
the analysis of clinical samples.

EBM, a discipline that in part had its begin-
nings in technology assessment, evolved by 
adopting methodologies common in other domains 
of medicine such as epidemiology, but also by 
learning from the more remote fields of econom-
ics, business, and engineering. As it has matured, 
EBM has been incorporated into medical school 
curricula, and its principles, constantly refined, 
are used in the elaboration of widely used prac-
tice guidelines and consensus statements.

In this chapter, we consider how the recent 
advances in science and technology, as well as 
changes in cultural and social trends, act as power-
ful forces that argue in favor of the incorporation 
of the tenets of EBM into the rapidly changing 
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 discipline of diagnostic pathology. We also 
 consider some of the arguments of those who are 
critical of integrating EBM in the mainstream of 
pathology.

The Socio-Economical Context  
of the Changing Technological 
Landscape

Since the middle of the twentieth century, the 
pace of technical evolution in the medical sci-
ences has accelerated. The consequences of this 
have been wide reaching. The practice of almost 
every single specialty of medicine today has been 
drastically affected by the technological innova-
tion resulting from the unprecedented conver-
gence of the progress made in each of several 
unrelated disciplines. The complexity of practic-
ing medicine increased and required constant 
adaptation of the healthcare delivery models. 
Studies undertaken in the 1970s began to show 
that there was room for improvement in the way 
medicine was being practiced. Both academics 
and public interest groups began to question the 
efficiency of the medical system [1, 2].

Coming hand in hand with the rapid therapeu-
tic and technological advances of the 1960s was a 
significant increase in the intrinsic cost of treat-
ing illness. An increase in diagnostic procedures 
and means to establish the cause of disease mul-
tiplied the cost of health care. Thus from a purely 
practical standpoint, the need emerged to criti-
cally evaluate all new technologies before they 
would be widely adopted. In 1973, as a conse-
quence of the first oil crisis, the economic burden 
imposed by the cost of medical care was under-
scored further as the crisis revealed how vulner-
able national economies were to perturbation and 
how the subsequent destabilization of the econ-
omy and inflation affected medicine. Both the 
cost of health care and the cost of medical 
research increased. Those bearing the cost of 
health care, whether governments, nonprofit or 
private enterprise, began to seek ways to actively 
manage the resources needed to provide health 
care. Thus by the last quarter of the twentieth 
century, it became clear there was a need for a 

framework through which to look at the objective 
evidence that was the basis of medical practice.

Finally, through globalization, the industrial-
ized nations realized how much the improvement 
of the health and life chances of the neediest 
impacted on the wealthiest. Effective therapies and 
diagnostic technologies available to the  developed 
nations have not been and are still not yet available 
to the poor. As a consequence, many of the com-
ponents of the medico-industrial  complex have 
intensified their engagement in generating robust 
and cheap diagnostic technologies and therapies 
suitably adapted to be deployed in the developing 
world and among underserved populations. As 
these new tools are created and used in the clinic, 
each requires a rigorous evidence-based analysis 
of its precision and efficacy.

Recent Forces Reshaping  
the Practice of Pathology

At the core of EBM is the question of how we 
handle information that serves to support medical 
intervention. What value we decide to place on 
the information, how we go about obtaining new 
information, and how we compile existing knowl-
edge are all crucial processes of EBM. And of 
paramount importance is how we obtain the 
information pertinent to the diagnosis and man-
agement of a single patient.

In recent years, pathology, and more specifi-
cally diagnostic pathology, has undergone pro-
found change due to the rapid accumulation of 
basic knowledge and due to the rapid, almost ver-
tiginous, development of technologies that 
expand the possibilities of tissue and cell analy-
sis. New information, which is not necessarily 
clinically worthwhile, is accumulating so fast 
that it is difficult to distinguish the truly impor-
tant content from the noise. This proliferation of 
available information is another reason why the 
principles of evaluating the value of the evidence 
are becoming ever more crucial for both the gen-
eral practitioner and the academician.

In laboratory medicine, two types of informa-
tion are used in medical decision-making: (1) 
laboratory values and (2) anatomical pathology 
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diagnoses and values. Each of these two 
 subdisciplines has its specific challenges and is 
moving toward EBM at a different speed. Because 
of its inter pretative nature, however, anatomical 
patho logy  tends to remain anchored in “ eminence-  
based medicine” mode rather than relying on 
strong grades of evidence. It is precisely here, in 
the realm of tissue analysis, that modern tech-
nologies are opening inroads and calling for the 
rigorous use of evidence-based tools. The tissue 
samples interrogated under the microscope are 
now amenable to a workup that provides resolu-
tive answers to the questions raised by the diag-
nostic pathologist. The question is not only what 
kind of disease, process, or lesion are we con-
fronting but also what is the best and most efficient 
therapy and what response is to be anticipated.

The first tissue analysis technology to make an 
impact in diagnostic surgical pathology was immu-
nohistochemistry (IHC), and it has served as an 
effective vehicle for the adoption of EBM. For 
example, IHC not only provided evidence for a 
diagnosis but it also began to introduce quantita-
tive histopathology by enumerating cells express-
ing a given antigenic determinant. Where the 
quantitative approaches of morphometry had failed 
to impact daily diagnostic practice, IHC changed it 
by storm and brought the rigor of the laboratorian 
to histopathology, creating best practices, practice 
algorithms, and practice standards [3].

Yet one of the most profound developments 
to affect the practice of medicine in the last 20 
years has unquestionably been the emergence of 
the field of molecular medicine. Molecular med-
icine has brought unprecedented knowledge 
about the pathogenesis of many diseases and 
served as a rational basis for therapy design. 
Molecular technologies have brought and con-
tinue to bring  constant innovation to all branches 
of laboratory medicine, and with that, a quantum 
leap in the volume of information to be man-
aged. The ability to extract tissue components 
such as proteins or nucleic acids from tissues 
and subject them to a comprehensive analysis 
has provided us with high-density data sets 
(“omics”) that can be mined by artificial intelli-
gence [4]. The general strategy is to reduce these 
large assemblies of data to a few features that 

can then be turned into a clinically applicable 
test in the laboratory. In other instances, PCR-
based approaches applied to a micro-dissected 
sample enable the patho logist to detect with 
specificity an infectious agent or a genetic lesion 
and thus diagnose with  precision the etiology of 
a lesion.

The modern tools of molecular diagnostics 
allow us to obtain information from a patient 
with unprecedented precision and breadth. Two 
tumors arising in the same organ and histologi-
cally similar can now be sorted out by analyzing 
which signal transduction pathway is preferen-
tially and differentially activated in each one of 
them or what specific mutational spectrum is 
present in each one of the tumors [5–7]. The 
molecular alterations found in each tumor may 
dictate specific targeted therapies. This type of 
characterization of a lesion is the basis for per-
sonalized medicine, “the right treatment for the 
right person at the right time,” and the corner-
stone for predictive medicine: the ability to pre-
dict the response of an individual patient to a 
specific therapy. The crucial characteristics of 
this type of evidence are (1) its objective preci-
sion inherent in modern molecular analytical 
techniques and (2) the fact that in most instances 
the molecular alteration is causally linked to the 
pathophysiology of the disease. When present, 
the causal nature of the link established by 
experimental studies and refined by observa-
tional and therapeutic studies in the human con-
stitutes the highest quality of evidence upon 
which to base a targeted therapy for an individ-
ual patient.

With the availability of reliable, fast, and eco-
nomic sequencing technologies, the individual 
genome is becoming a reality, and it has been 
argued that the requirements for the recovery of 
clinically useful insights from an individual’s 
genome are different from those of traditional 
cohort-based medical knowledge.

Since evidence rules must be applied to the 
singularity of the individual (her or his unique 
sequence), we ought to consider how the tradi-
tional tenets of EBM will be applied to specific 
information only valid for a single patient. The 
case is being made for an alternative approach 
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based on translational engineering and  intelligence 
(biointelligence) for interpreting the genomic 
information from an individual patient [8]. The 
ability to sequence the 1–2% of a patient’s 
genome that encodes for structural proteins of the 
cell can enable the detection of disease causing 
mutations in a single patient. For example, the 
detailed examination of the DNA of a single 
patient suffering from Bartter syndrome revealed 
a novel mutation in the gene coding for a protein 
responsible for the absorption of water and salt in 
the intestine. Not only was the case of the index 
patient resolved, but when other infants with a 
presumptive diagnosis of Bartter syndrome were 
examined, five more mutations were identified in 
the transporter protein [9]. These results illustrate 
how the new technologies, in this case exon cap-
ture and sequencing, generate clinically useful 
results.

In parallel to the advances in biomedical 
technologies, there have been advances in infor-
mation processing, acquisition, and display that 
have allowed the pathologist to continue as the 
physician-integrator of information. The capac-
ity of an individual to apprehend and integrate 
different streams of general evidence and infor-
mation about a given patient has been progres-
sively taxed. Fortunately, information technology 
and computational science have come along at 
the right time, expanding our capacities to dis-
play, analyze, and integrate complex and rich 
streams of data. It is now possible to enlist com-
putational power to carry out the integration of 
thousands of features and select a small subset 
of parameters that solve the question (diagnos-
tic, prognostic, predictive). Statistical methods 
can then be used to test thousands of features for 
predictive power and select the most powerful 
ones (feature reduction) to generate a test that 
can be validated. Modern machine vision tech-
nologies that use segmentation, object identifi-
cation, and topology can derive thousands of 
objective reproducible features from a tissue 
section and then proceed to overlay specific 
molecular markers on the segmented image to 
produce a “quantitative functional histopathol-
ogy,” thus creating a powerful and precise diag-
nostic tool [10, 11].

A task once done by a master diagnostician, 
who, however, was informed by many fewer 
elementary features, can now reach every single 
patient and be performed in a reproducible man-
ner. When done by artificial intelligence as 
opposed to an unaided human mind, the pro-
cessing will be repeated without error 100% of 
the time.

From Precision Medicine to Efficient 
Medicine

With the advent of precision technologies that 
identify and measure one or several components 
in a clinical specimen with high specificity and 
sensitivity or reveal a submolecular alteration, 
the science of diagnostics enters the realm of 
“precision medicine.” The evidence obtained is 
objective and precise, and the principles of EBM 
can then be turned to the task of refining preci-
sion medicine into efficient medicine. Efficiency 
is to be considered with the patient in mind: Are 
we subjecting the person to the minimal number 
of tests necessary to best identify and treat the 
problem? Are we using the best combination of 
drugs for that particular patient? EBM offers the 
optimal path to define the most economical way 
to deliver the personalized precision medicine 
that we can provide today. It is important to keep 
in mind that “economical” is used in the sense of 
the most benefit for the resources used and not 
necessarily the cheapest.

In our current climate, the cost of medical 
resources is a major concern. At a time when the 
cost of health care is becoming prohibitive for 
industrialized nations (U.S. health expenditures 
are projected to reach 20% of the GNP by 2020), 
the tenets of EBM are being used to base policy 
and resolve debate. Right-thinking people may 
come to different conclusions based on the avail-
able evidence, but to oppose someone’s evidence-
based stance does not require invective, rather 
facts and logical argument. Many government 
funding research in healthcare quality are banking 
on the power of EBM to decrease the rising share 
of the national economies taken by healthcare 
expenditures. Costs can be brought down by 
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encouraging efficient medicine and by  discouraging 
ineffective medical practices, but only with the 
acceptance of the EBM process can we arrive at a 
consensus concerning what is medically efficient 
and what is ineffective. In the U.S., Comparative 
Effectiveness Research (CER), a broad initiative 
sponsored by the Agency for Health Care Research 
and Quality, funds a wide spectrum of research 
ranging from meta-analyses of trials, to methods 
of behavior modification, to methods for formu-
lating health policy. Whereas traditionally the evi-
dence has been produced by studies designed 
specifically to generate the data to support a state-
ment or recommendation, the widespread appli-
cation of information technology to medical 
practice is enabling the collection and aggregation 
of data from the routine medical “day to day” 
practice [12].

Anatomical Pathology has been a low-cost 
discipline, a highly efficient one considering the 
value it contributes, but with the increase in the 
use of sophisticated technologies and methods 
the question of efficiency will surface more often. 
Let us not ignore that pathology tests will become 
the gatekeepers of expensive therapies as person-
alized medicine gains momentum.

Evidence-Based Medicine Must  
Take the Patient into Account: 
Participatory Medicine

One of the interesting aspects of the real-world 
approach in gathering data is taking into account 
the patient–physician relationship as one crucial 
component of the system to be analyzed. In fact, 
we have little detailed evidence of how natural 
phenomena such as disease interact with a social 
construct such as a health system [13].

The present emphasis on patient’s choices  
de facto introduces the patient into the process of 
generating data. With the information revolution 
in full gear, much of the knowledge that was 
exclusive to physicians and other trained health 
personnel is now accessible to the lay public. 
Information is read and absorbed with avidity by 
those facing the distressing but motivating condi-
tion of being a patient. Through the aggregation 

of many patients’ personal experiences, new 
communities are organized around the common-
ality of shared medical circumstance, such as 
physical illness or genetic condition. The forma-
tion of virtual communities or support networks, 
a phenomenon for which Rabinow has proposed 
the concept of “biosociality” [14], has the 
 potential of becoming an active contributing 
 factor to data sets that can be further mined using 
computational tools. It does not seem risky to 
predict that the communication revolution will 
enable observations made and rigorously recorded 
by lay individuals to be admitted as “evidence” 
and form the basis for future observational stud-
ies. In the near future, patients will be contribut-
ing to shape, in many ways, the evidence with 
which the EBM methods will generate the “best 
practice standards.”

Is There Evidence to Support  
the Need for Evidence-Based 
Medicine in Pathology?

The overarching argument we have put forth is 
that the best way to handle the vertiginous 
changes affecting pathology, particularly diag-
nostic pathology, is to adhere to the tenets of 
EBM. Critics of this argument will present a 
number of objections. They will hasten to point 
out that there is no robust body of evidence to 
support our position; that time and resources are 
limited and are less and less available to busy 
practitioners; that EBM will require training in 
additional skills to search for the available infor-
mation and evaluate the strength of the available 
evidence; that EBM is “cookbook medicine” and 
“takes the art out of diagnostic clinical medi-
cine”; that it will threaten current standards of 
therapeutic excellence as initiatives of the CER 
type use EBM to cut costs without regard for the 
quality of care [15].

It is certainly true that stricto sensu there is no 
formal evidence to support EBM. A randomiza-
tion study of traditional style versus EBM prac-
tice style in diagnostic pathology is practically 
impossible and would very likely be unethical. 
The fact is, however, that pathologists, because of 
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the nature of their practice, have operated close to 
EBM standards for a long time and have more 
often than not recorded their diagnostic outcomes 
in observational studies involving case series or, 
more recently, in studies coupled to clinical trials. 
The leap to formalizing the principles of EBM in 
the practice of pathology is not great. As a disci-
pline, pathology has traditionally been seen as 
providing “the evidence,” and yet pathologists 
and clinicians have come to realize that appear-
ances can be deceiving and that very similar if not 
identical morphologies can have very different 
clinical behaviors that demand different therapeu-
tic strategies. Not knowing how to distinguish the 
mimics from the authentic lesion constitutes indi-
vidual ignorance that can be repaired by acquiring 
the knowledge to make the distinction. By con-
trast, being confronted by lesions that are identi-
cal and thus indistinguishable but with a very 
different behavior constitutes collective igno-
rance. Two prominent examples presenting a 
dilemma rooted in this type of ignorance are intra-
ductal low-grade breast cancers and prostate can-
cers with a Gleason grade of 6 or less. Both are 
early cancers often found in asymptomatic patients 
at screening, and their therapy ranges from watch-
and-wait surveillance to aggressive intervention 
designed to eradicate the tumor. We are just begin-
ning to learn how to make such distinctions, mak-
ing appeal to objective tools such as the ones used 
in systems pathology. Conclusive evidence upon 
which to base a distinction and rational therapy 
will hopefully be validated in the near future.

The paradox is that the same diagnosticians 
who have acquired new powerful tools must now 
seek additional evidence to support their reasons 
for saying what they say, for diagnosing what 
they diagnose, and for recommending what they 
recommend. In other words, pathologists have 
transitioned from embodying the evidence to 
having the tools to uncover it and having to jus-
tify the use of these tools. The principles of EBM 
may not be perfect, but they are probably the best 
for the evaluation of technologies, codifying their 
use in practice, and assessing their cost and effec-
tiveness. The accuracy, value, and efficacy of 
these new ways must be methodically docu-
mented, ideally by randomized trials that  compare 
a new diagnostic or predictive modality to the 

conventional approach used to solve a specific 
clinical problem. It behooves the practitioner 
working on a specific case to follow the well-
defined steps involved in the practice of EBM: 
(1) convert information needs into answerable 
questions, (2) track down the best evidence with 
which to answer these questions, (3) critically 
appraise the evidence for its validity and impor-
tance, (4) integrate this appraisal with  clinical 
expertise and patient values to apply the result in 
clinical practice, (5) evaluate performance. 
Adherence to these tenets will go a long way to 
manage uncertainty in clinical practice.

Objections to EBM, on the basis of the increas-
ingly limited time and resources available to busy 
practitioners and on the perceived additional bur-
den of developing the skills necessary to search 
for the available information and evaluate the 
strength of the available evidence, raise legitimate 
concerns. Fortunately, however, the IT revolution 
has gone a long way to mitigate these factors. The 
skills necessary to access information can be 
learned at any stage of clinical training and are 
now taught to medical students in most medical 
schools. More articles of the “ systematic review” 
type are appearing in general, not just in subspe-
cialty journals, and brief summaries of evidence 
relevant to common clinical questions can be 
accessed at the point of care.

Many of the objections articulated by oppo-
nents of EBM are based more on misperception 
than on substance. Two of the major arguments 
of opponents to EBM are that “it is cookbook 
medicine” and that “it takes the art out of clinical 
medicine.” Following the principles of EBM does 
by no means exclude creativity. The best clini-
cians are the ones capable of making cognitive 
connections between facts and rules. That is the 
product of a creative process – a process that, if 
grounded on the rules of evidence, will be able to 
be taught, learned, and constantly perfected.

It is also a misperception that EBM is used by 
initiatives of the CER type simply to cut costs with-
out regard for therapeutic standards or the quality of 
care. Those who feel uncomfortable with EBM 
argue that the use of the findings will not be geared 
to the benefit of the patient, but to the rationing of 
health care [12]. As noted earlier, many aspects of 
EBM lead directly to more effective patient care. 
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EBM is not designed to answer philosophical 
 questions about the values and priorities of a society 
and therefore cannot pretend to. But one can strive 
for a democratically based transparent process that, 
after informed dialog and debate, will generate a 
consensus that accommodates the values and priori-
ties of the vast majority of peoples and interests.

Conclusion

Modern technologies and ever more incisive 
methods of tissue analysis are providing increas-
ing accuracy, resolution, and effectiveness to 
modern diagnostic sciences. We are immersed in 
a rapidly evolving world where disruptive 
 technologies come at such speed and information 
is generated in such abundance that EBM becomes 
an essential philosophical and practical factor of 
stability. It behooves all of us in patho logy to 
establish EBM as the linkage of technological 
innovation and research to the resolution of patient 
illness and problems in the delivery of care.
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What is Evidence?

With the advent of evidence-based medicine 
(EBM), the word and concept “evidence” needs to 
be explored. The concept of evidence is the crux of 
what is attractive (or controversial) about the prac-
tice of evidence-based medicine. Webster’s dic-
tionary defines evidence as “something that 
furnishes truth” or “an outward sign” [1]. The for-
mer definition embraces the idea of objectivity and 
has a great deal of purpose to it. The latter seems to 
equate evidence with an observation that gives 
insight into an occult process and makes no judg-
ment of how likely said process is to occur. In this 
context, evidence is an indication, not proof. By 
including these two definitions, Merriam-Webster’s 
English dictionary comments on the heterogeneity 
of the worth of evidence. In other words, evidence 
is of variable quality. Merriam-Webster’s Legal 
dictionary also embraces this ambiguity by includ-
ing an element of doubt when it comes to the merit 
of evidence, defining it as “something that fur-

nishes or tends to furnish proof” [2]. Something 
that tends to achieve a certain goal is obviously not 
completely efficacious. If we consider these defi-
nitions to be equally valid, we arrive at the conclu-
sion that in a linguistic or legal environment, 
evidence is recognized to be neither completely 
specific nor completely sensitive. In the spirit of 
incomplete sensitivity and specificity, we might 
define evidence as something that tends to furnish 
proof. Of interest are the lack of entries for “evi-
dence” and “evidence based medicine” in the 28th 
and most recent edition of Stedman’s Medical 
Dictionary, published in 2006.

Best Evidence:  Where Did the Term 
Come from?

The term “best evidence” first appeared in 
accounts of English legal proceedings dating to 
the mid-eighteenth century. It was born of the idea 
that some types of legal evidence are better than 
 others which are nevertheless useful and 
admissible  in court if no other evidence is avail-
able. It was codified into law in the UK soon after 
the case in which the principle made its first 
appearance was decided [3] and subsequently in 
the United States in 1975 [4]. According to 

Keywords

Evidence-based medicine in pathology • Best evidence, defined • Evidence 
evaluation • Internal validity of evidence

C.N. Otis (*) 
Department of Pathology, Baystate  
Medical Center, Tufts University  
School of Medicine, Springfield, MA, USA 
e-mail: Christopher.otis@bhs.org

What Is Best Evidence in Pathology? 3
Peter J. Saunders and Christopher N. Otis 

A.M. Marchevsky and M.R. Wick (eds.), Evidence Based Pathology and Laboratory Medicine,
DOI 10.1007/978-1-4419-1030-1_3, © Springer Science+Business Media, LLC 2011



28 P.J. Saunders and C.N. Otis

Webster’s New World Law Dictionary, the best 
evidence rule is defined as: “The rule that, to prove 
the  contents of a writing, recording, or photo-
graph, the original is required unless it is not 
available for some reason other than the serious 
fault of the party trying to prove the contents 
thereof. If the original is unavailable, the testi-
mony of the person who created the original or the 
person who read it (if a writing), listened to it (if a 
recording), or saw it (if a photograph) may testify 
to its content. However,  modern evidentiary rules 
usually permit the use of mechanical, electronic, 
or other similar copy instead of the original” [2].

Thus, in the legal arena, “best evidence” may 
be interpreted as “best available evidence,” rather 
than “the best type of evidence.” Physicians desire 
to provide the best for patients, but are intimately 
aware of the real-life constraints that make for 
suboptimal solutions. Perhaps practitioners of 
medicine might take a cue from the legal profes-
sion and regard “best evidence” as something 
that is the best that can be done at a given point in 
time (that is, the best that is available), and subse-
quently something that may be improved upon 
(something that may be bested).

How Is the Quality of Evidence 
Evaluated in Evidence-Based 
Medicine?

Study quality is synonymous with study internal 
validity. Internal validity is generally defined as 
how well a study measures what it is designed to 
measure. A study without design flaws that is exe-
cuted properly and is not subject to unexpected 
environmental influences will not yield poor- 
quality data, and vice versa: a poorly conceived, 
executed, and storm-tossed study will not yield 
good quality data. Thus, quality of evidence is 
evaluated by evaluating the study from which it is 
derived. Study quality is currently evaluated using 
different criteria for different kinds of studies. 
This is to say that a meta-analysis and a  case–control 
study must meet different criteria to be deemed of 
high quality. There are multiple different bodies 
across the globe that create criteria in order to per-
form this function, and as one might expect, the 

criteria differ from one organization to the next. 
Overall, the decision of which criteria to include 
and which to exclude appears fairly subjective.

What Is Internal Validity?

The Center for Evidence Based Medicine (CEBM) 
defines validity and internal validity as follows:

The extent to which a variable or intervention 
measures what it is supposed to measure or 
accomplishes what it is supposed to accomplish. 
The internal validity of a study refers to the integ-
rity of the experimental design [5].

The U.S. Preventive Services Task Force 
(USPTF), an offshoot of the Agency for Health-
care Research and Quality and a part of the U.S. 
Department of Health and Human Services, is the 
CEBM’s American counterpart. The USPTF 
refers to internal validity as “strength of study 
design” [6]. The USPTF uses a ranking system 
for assessing the internal validity of evidence at 
an individual study level. The hierarchy of this 
ranking system is as follows:
   I. Properly powered and conducted random-

ized controlled trial (RCT); well-conducted 
systematic review or meta-analysis of 
homogeneous RCTs

II-1. Well-designed controlled trial without 
randomization

II-2. Well-designed cohort or case–control ana-
lytic study

II-3. Multiple time series with or without the 
intervention; dramatic results from uncon-
trolled experiments

 III. Opinions of respected authorities, based on 
clinical experience; descriptive studies or case 
reports; reports of expert committees [7]

The USPFT uses sets of criteria that are spe-
cific to study type to determine whether a study 
possesses “good,” “fair,” or “poor” internal valid-
ity. For example, systematic reviews are checked 
to determine whether or not they meet the following 
criteria that have been deemed critical for  minimal 
internal validity:

Comprehensiveness of sources considered/• 
search strategy used.
Standard appraisal of included studies.• 
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Validity of conclusions.• 
Recency and relevance are especially impor-• 
tant for systematic reviews [7].
A good study is described as a “recent, relevant 

review with comprehensive sources and search 
strategies; explicit and relevant selection criteria; 
standard appraisal of included studies; and valid 
conclusions” [7]. A fair study is described as a 
“recent, relevant review that is not clearly biased 
but lacks comprehensive sources and search strat-
egies” [7]. A poor study is described as “outdated, 
irrelevant, or biased review without systematic 
search for studies, explicit selection criteria, or 
standard appraisal of studies” [7].

Good internal validity is the result of good 
study design. An appraisal of the design of a study 
under consideration might include searching for 
evidence of the above types, as well as answering 
the following questions:

Is the question properly defined?• 
Are inclusion and exclusion criteria stated?• 
Is the sample size large enough?• 
Are the units of analysis well defined? Are • 
they independent of each other?
Are measurements made in the same way • 
(same time, same conditions, etc.) for all?
Is the scale of measurement objective? [• 8]

What Statistics Are Generally Used 
to Analyze Data in Studies? How 
Should Their Results be Interpreted 
to Determine the Internal Validity  
of the Studies?

Before proceeding, it might be prudent to review 
the basic concepts of sensitivity, specificity, posi-
tive likelihood ratio, and positive predictive value 
(PPV). Sensitivity is perhaps best viewed as the 
true positive rate. It is the number of times that a 
test is deemed positive divided by the number of 
times that the test should be positive if the assay 
were to detect all cases of the condition under 
investigation: TP/(TP + FN). Otto von Bismarck, 
Germany’s first Chancellor, is reputed to have said 
“it is better that ten innocent men suffer than one 
guilty man escape” [9]. This is an example of high 

sensitivity for guilt at the cost of specificity. 
Specificity can analogously be viewed as the true 
negative rate. It is the number of true negatives 
divided by the number of times the test is initially 
thought to be negative: TN/(TN + FP). Blackstone’s 
formulation, named for English jurist William 
Blackstone and later echoed by Benjamin Franklin, 
states that it is “better that ten guilty persons escape 
than that one innocent man suffer” [10]. This is an 
example of high specificity (for guilt) at the cost of 
sensitivity. The positive likelihood ratio (+LR) is a 
very powerful tool that determines how much pre-
test probability increases due to the procurement of 
a positive test result. The positive likelihood ratio 
changes as the threshold for positivity changes, as 
do the sensitivity and specificity of a given test 
type. This can be demonstrated graphically as the 
derivative of the slope of a plot of sensitivity versus 
1-specificity (the receiver operating characteristic 
(ROC) curve, to be discussed in more depth later in 
this chapter). Positive predictive value (PPV) is the 
proportion of patients with positive test results who 
are correctly diagnosed, that is to say the number of 
true positives divided by the number of all results 
initially considered positive (including those that 
are later determined to be false positives): TP/
(TP + FP). An interesting attribute of PPV is that 
with this concept we are beginning to venture into 
the realm of creating a denominator that is not one 
group (like all the patients who have a disease), but 
rather comprises parts of two groups (some of the 
patients who have a disease and some of the patients 
who do not have the disease). This results in a situ-
ation in which the population from which the sam-
ple size is derived can drastically affect the outcome 
of a test. Specifically, two populations with differ-
ent prevalences of a certain disease will yield two 
different PPVs so that clinical use of PPV should 
be restricted to populations in which the prevalence 
is the same as test population from which the results 
were derived [11].

Relative risk and absolute risk are frequently 
employed statistical tools that, when used 
together, unveil the degree of additional risk 
above a baseline. Odds ratio, the ratio of the odds 
of a given phenomenon occurring in two sepa-
rate groups, is used to determine the differential 
risk for the two groups. The ROC curve is an 
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 underused statistical method of determining like-
lihood ratios, the approximate accuracy of a test, 
and for evaluating sensitivity and specificity at 
given diagnostic thresholds. Positive and nega-
tive predictive values are statistical tools that help 
 determine how likely a positive or negative test is 
to represent the presence or absence of a condi-
tion within a given population.

There are other statistical functions within 
most studies that are included to showcase inter-
nal validity (a form of internal quality assess-
ment), rather than to prove causation (the usual 
goal of studies investigating both therapeutic and 
diagnostic interventions). These include the con-
fidence interval, the confidence level, the p-value, 
the funnel plot, and Cohen’s kappa.

Confidence intervals are usually included after a 
measurement of probability (e.g., odds ratio), as an 
assessment of the reliability of the measurement. If 
a distribution is nonparametric (i.e., non-Gaussian), 
statistics like the odds ratio and relative risk do not 
accurately portray reality. For example, if there 
exists a bimodal distribution of events, one single 
odds ratio may spear the nadir between the two 
peaks which is misleading. Assuming something 
like this is not overlooked, a large confidence inter-
val will result from a distribution with a flattened 
appearance graphically – the result of minimal cor-
relation between supposed cause and effect. Large 
confidence intervals for multiple parameters indi-
cate that a study may possess poor internal validity 
that is contributing to difficulty in determining 
accurate statistical estimates.

P-values are ubiquitous throughout medical tri-
als. A p-value greater than 0.0X indicates the prob-
ability that the results of a study were achieved with 
less than X% likelihood that this is due to chance. 
Simply put, the p-value is the percent chance that 
the null hypothesis explains the results obtained. 
The preferred p-value for the majority of studies is 
0.05 or 5%. The concept that the results of a given 
test resulted from serendipity (a 1 in 20 chance) is 
somewhat arbitrary. Nevertheless, it functions such 
that there is a statistical standard. The p-value can 
be looked upon as a statistical gauge of internal 
validity: studies with large p-values are more likely 
to falsely connect cause and effects, and thus more 
likely to be designed in a way that does not isolate 
and exclude the mechanism by which chance may 

lead to seemingly significant results. The lower the 
p-value, the greater is the likelihood that the study 
has good internal validity.

Cohen’s kappa is a powerful tool for internal 
quality assessment of a study and relates specifi-
cally to how often multiple detectors arrive at the 
same conclusion for the same reasons as each 
other. It is a way of determining inter-rater agree-
ment that does not occur by chance (e.g., how 
often two pathologists agree on the same diagno-
sis other than the times they agree for divergent 
reasons). Cohen’s kappa is calculated by dividing 
the rate of nonrandom agreement (total agreement 
minus chance agreement) by the percent of occur-
rences that something other than chance agree-
ment occurs (1-rate of chance agreement). The 
rate of nonrandom agreement is calculated by 
summing the product of the positive result rate 
from two detectors and the product of the negative 
result rate from the two detectors. For example, if 
pathologists A and B are given 50 cases and they 
agree on a positive diagnosis 20 times (or 40% of 
the time) and they agree on a negative diagnosis 15 
times (or 30% of the time), then the total agree-
ment is 70% of the time, or 0.70. Now assume that 
pathologist A makes a positive diagnosis 50% of 
the time and negative diagnosis 50% of the time, 
while pathologist B makes a positive diagnosis 
60% of the time and a negative diagnosis 40% of 
the time. This last piece of data can be used to 
determine how frequently the two pathologists 
agree by chance: the hypothetical probability of 
chance agreement is calculated by multiplying the 
rates of both pathologists’ positive diagnoses 
(0.5 × 0.6 = 0.3), multiplying the rates of both 
pathologists’ negative diagnoses (0.5 × 0.4 = 0.2), 
and summing them (0.3 + 0.2 = 0.5). In this exam-
ple, a kappa of 0.4 is generated by applying these 
elements to the kappa function defined above 
([0.7 − 0.5]/[1 − 0.5]). Generally, kappa values of 
less than 0 represent no agreement, 0–0.2 slight 
agreement, 0.21–0.40 fair agreement, 0.41–0.60 
moderate agreement, 0.61–0.80 substantial agree-
ment, and 0.81–1.00 almost perfect agreement.

When attempting to determine the internal 
 validity of a meta-analysis, it is imperative to 
determine whether or not as many individual 
 studies as possible have been incorporated. 
Unfortunately, not all studies that are conducted 
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are published. Frequently, this is due to effect size 
lying outside (too high or too low) a desired target, 
which is often the result of studying a population 
larger or smaller than that which might yield a sig-
nificant result. A funnel plot is a plot of study size 
against a marker of treatment effect (e.g., mean 
standard error), which can uncover silencing of 
results due to unwanted results derived from large 
or small studies. If publication bias is absent, the 
points plotted on the funnel plot will take the form 
of an inverted funnel. Inclusion of a funnel plot 
that has this inverted-funnel shape is reassuring 
that publication bias is not impeding the flow of 
such studies into the information pool.

Besides the above statistical tests that one 
should expect to see in a given study (and the 
absence of which might raise questions about the 
rigor of the study), there are other more compli-
cated manipulations, the inclusion of which should 
prompt careful critique of the study. Per Dr. Trisha 
Greenhalgh, professor of primary care at University 
College, London “The number of possible statisti-
cal tests sometimes seems infinite. In fact, most 
statisticians could survive with a formulary of 
about a dozen” [12]. These critical statistical tests 
include: the t-test; the Mann–Whitney U-test; the 
Wilcoxon matched pairs test; the one-way analysis 
of variance (F) test; the Kruskal–Wallis one-way 
analysis of variance; the two-way  analysis of vari-
ance; the c2 test; Fisher’s exact test; Pearson’s r; 
Spearman’s rank correlation coefficient; regres-
sion by least squares method; nonparametric 
regression [12]; and the ROC curve. Of course, 
just because a test not mentioned above is employed 
does not mean that it is part of an attempt to make 
the data fit at all costs, but the more complicated 
the function the less useful the resulting trends 
are to everyday diagnosis or intervention. Per 
Dr. Greenhalgh’s comments on the statistical tests 
other than those listed above, “The rest should 
generally be reserved for special indications. If the 
paper you are reading seems to describe a standard 
set of data which have been collected in a standard 
way, but the test used has an unpronounceable 
name and is not listed in a basic statistics textbook, 
you should smell a rat. The authors should, in such 
circumstances, state why they have used this test, 
and give a reference (with page numbers) for a 
definitive description of it” [12].

The Receiver Operating 
Characteristic Curve: A Special Tool

This is a statistical tool that first saw use during 
World War II by the Royal Air Force. It was used 
to optimize radar operators’ level of suspicion 
regarding the identification of objects in the air-
space off the English coast. It was crucial to the 
survival of the United Kingdom that the appear-
ance of phosphorescence on an oscilloscope 
accurately alerted operators to incoming enemy 
aircraft. An operator’s threshold was adjusted by 
plotting a graph of the percent of the time he or 
she identified enemy aircraft correctly (true posi-
tive rate) against the percentage of the time he or 
she identified other entities (clouds, birds, etc.) 
incorrectly (the false positive rate). As true posi-
tive rate is equal to sensitivity and false positive 
rate is equal to 1-specificity, this is also a plot of 
sensitivity versus 1-specificity. The curve that is 
generated is known as the Receiver Operating 
Characteristic (ROC) curve. As with all curves, 
the derivative and the integral provide interesting 
information. The derivative, that is to say the 
slope of the curve, equates to the positive likeli-
hood ratio (+LR). The integral, i.e., the area under 
the curve (AUC), is approximately equivalent to 
the accuracy of the test (it is not absolute accu-
racy because it does not take into account values 
that have fallen under the curve due to chance, 
but this is accepted to be a small proportion of the 
total measurements and can be addressed with a 
correcting factor if need be). It would be fairly 
easy to generate ROC curves (using the true posi-
tive rate and the false positive rate) for a number 
of studies and to determine which ones generated 
the maximal +LRs and AUCs. These values could 
be averaged over multiple studies of the same 
type and then compared with other study types in 
order to determine which study type was 
optimal.

Although the ROC curve is a powerful tool, 
statistical methods like the ROC curve do not 
eliminate the biases that exist in a poorly desi-
gned study, and in fact, may be misleading by 
 generating inaccurate assessments of the inter-
vention as they may not reveal the internal biases 
in studies.
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What is External Validity?

The CEBM defines external validity in reference 
to a study as “The appropriateness by which its 
results can be applied to non-study patients or 
populations” [5].. The USPTF refers to external 
validity as “applicability” [13] and “generaliz-
ability” [14].

What Role Does External Validity 
Play in the Evaluation of Evidence 
Quality?

External validity is important in determining 
whether or not evidence should be incorporated 
into a specific recommendation and the strength 
(or the grade) associated with the recom-
mendation. Applicability, or lack thereof, has 
nothing to do with how good the study is at 
answering a particular question. It is a mistake to 
confuse the trueness of an answer with how use-
ful that answer will be in a given situation. The 
CEBM’s levels of evidence are grouped into 
“grades of recommendation” denoted A, B, C, 
and D. The groupings are not based upon the 
quality (internal validity) of the evidence, but the 
clinical applicability of the study (external valid-
ity) which is influenced by such factors as “cost, 
ease of implementation (of treatment, diagnostic 
test ,etc.), and importance of the  disease” [15].

Study Designs: How Are They Used 
to Rank the Quality of Studies?

This is a critical concept and one that the 
 individual pathologist (or any other physician) 
must consider. Ranking one study or one set of 
diagnostic criteria over another is the patholo-
gist’s bread and butter. It might seem that this 
should have been well fleshed out by now. 
However, the ranking systems seem to contain 
important  contradictions. For example, the 
University of Oxford CEBM, a body consulted 

by the U.K.’s National Health Service, includes 
only  systematic reviews in its highest stratum of 
evidence-generating studies even if the individ-
ual studies are not RCTs. It is difficult to imag-
ine that there exists evidence to prove that a 
single large, well-conducted RCT generates 
lower quality data than a systematic review of 
multiple small RCTs, each with its own micro-
cosm of variables.

Internal validity alone cannot be used to rank 
studies. For example, consider a common diag-
nostic dilemma encountered in pathology: The 
distinction of mesothelioma from mimics such as 
reactive mesothelium and adenocarcinoma. It 
would be very helpful to the pathologist if an 
immunohistochemical (IHC) stain was available 
to identify neoplastic mesothelial cells. A well- 
developed study would be prospective, random-
ized, blinded, and controlled. Such a study, if 
conducted in concordance with these principles, 
would be said to be internally valid. However, 
such a study would be extremely difficult to con-
struct in the everyday environment of pathology 
practice. The closest study likely to be conducted 
would be a retrospective review of known cases 
of mesothelioma and compared to cases of known 
mesothelioma mimics, employing a novel anti-
body hypothesized to discriminate between the 
two groups. This typical study conducted in 
pathology is at perhaps level III according to 
USPFT criteria. Obviously, such common pathol-
ogy studies do not reach the upper levels of best 
evidence. Even though both studies might have 
excellent internal validity, the RCT is deemed to 
have generated better evidence because the design 
is intrinsically better.

What Is the “Evidence Pyramid”?

This leads to the concept of evidence stratification 
based upon the quality of various study designs. 
The evidence pyramid is a simple graphical way 
of representing relative quality of evidence gener-
ated by different study types. Many versions of 
the evidence pyramid exist. For our purposes, we 
refer to the following evidence pyramid:
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The differences in the relative sizes of the 
 pyramid levels represent the approximate number 
of each kind of study in existence. The location 
with regard to superior and inferior is relative to 
the quality of evidence that each type of study 
generates: the type of study generating the high-
est quality data (meta-analysis) is at the top of the 
pyramid, and the type of study generating the 
lowest quality data (animal study) is at the base.

Many charts similar to this one have been 
generated for the new discipline of evidence-
based medicine, which has frequently been 
concerned with treatment, and less so with diag-
nosis. It can be readily appreciated from a chart 
of evidence stratification like the CEBM’s [16] 
(essentially a deconstructed evidence pyramid) 
that the relative value of a particular study type 
changes with respect to whether diagnosis, inter-
vention, or some other parameter is being evalu-
ated. Although the stratification of evidence 
quality seen in the EBM pyramid is fairly subjec-
tive, pathologists must not simply adopt this 
pyramid without some investigation into the 
possibility that diagnostic tests may require a 
differently organized algorithm. For example, the 
pyramid above is slightly different from those 
seen in EBM in that it incorporates a level of the 
pyramid for case report/case series/expert opinion. 
We choose to rate this as better evidence than 

animal studies, but inferior to controlled studies. 
It seems logical that these human-based endeavors 
should yield evidence of better quality than 
nonhuman-based studies if we are dealing with 
diagnosing and treating humans (the astute reader 
might point out that this is an external validity 
problem, not an internal validity problem, which 
would be a valid argument). Expert opinion is 
included in this tier by default: it is not controlled 
in any formal way, but again, it is, after all, 
presumably based on human data. If an expert 
has personally scrutinized many cases of a patho-
logic entity and taken a strong interest in many 
cases representing the entity with knowledge of 
clinical outcome, the expert’s opinion may be 
significantly better than second-to-bottom tier 
level evidence. The time-honored expert opinion 
in pathology may yet represent good evidence, 
although proving this point remains difficult.

Study Designs Providing “Best 
Evidence” in Clinical Medicine: 
Systematic Reviews and Meta-
Analysis

A systematic review is “an article in which the 
authors have systematically searched for, 
appraised, and summarized all of the medical 

Meta
Reviews

Systematic 
reviews 

Randomized Controlled Trials

Cohort studies 

Case control studies 

Case report/Case Series/Expert Opinion 

Animal studies 
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 literature for a specific topic” [17]. Systematic 
reviews are  compilations of multiple individual 
studies performed in attempt to overcome the 
problem of low power. Low power is principally 
due to small sample sizes of individual studies. 
A systematic review can be viewed as a study in 
which the “subjects” are a number of other stud-
ies. Systematic reviews can be qualitative where 
the results of the primary studies are summarized 
but not statistically combined, or quantitative 
where the results of the primary studies are statis-
tically combined. Quantitative systematic reviews 
are also known as meta-analyses [17]. The term 
“overview” is sometimes used to denote a system-
atic review, whether qualitative or quantitative 
[17]. Summaries of research that lack explicit 
descriptions of systematic methods are often 
called narrative reviews [18]. Both the USPTF 
and the CEBM rank systematic reviews and meta-
analyses as the highest level of evidence. Numerous 
other textbooks on evidence-based medicine laud 
systemic analysis, and specifically meta-analysis, 
as generating the best quality of evidence. 
Of course, the validity of a systematic study is 
only as strong as the individual studies that it com-
prises. Additionally, as for any study type, the 
validity may suffer if the design of the review 
itself is poor. Two important statistical tools used 
in meta-analysis are subgroup analysis and meta-
regression (a type of regression analysis).

What Is Subgroup Analysis?

Subgroup analysis compares smaller groups 
within the test group and the control group in 
order to determine if heterogeneity within these 
groups skews the data derived from the trial. This 
is a subjective, nonmathematical endeavor.

What Is Meta-Regression Analysis?

While the mathematical details of regression 
analysis are beyond the scope of this chapter, suf-
fice it to say that regression analysis is an extremely 
powerful tool for modeling systems with many 
variables, some of which may not be quantifiable. 

These unquantifiable variables do, however, have 
effects on the dependent variables (that which we 
are measuring and are most interested in) creating 
“wobble” in the dependent variable. The idea 
behind regression analysis is to create equations 
in terms of quantifiable variables to represent the 
unquantifiable variables, thus accounting for 
the “wobble”. This is most important when the 
results of different studies are aggregated in meta-
analyses: the “wobble” in the final values being 
compared (e.g., relative risk, PPVs, or other val-
ues used to compare studies in meta-analyses) 
needs to be explained mathematically so that an 
equation can be developed to describe the collec-
tive environment of the studies. The commonly 
employed types of regression analysis are linear 
regression (dependent variable solutions fall along 
a straight line, seen in system without “wobble”), 
fixed meta-regression (which uses effect size as 
a constant, and therefore cannot be used to com-
pare across studies, only within a single study), 
and random meta-regression (which does not set 
the effect size, and so can be used to compare 
 different studies that have different effect sizes).

What Is More Commonly Employed 
to Evaluate the Significance  
of Results Generated  
by Meta-Analysis, Subgroup  
Analysis or Meta-Regression?

Unfortunately, meta-regression, the most objec-
tive tool that we have to help generate the highest 
level of evidence, is difficult to employ due to its 
complexity. Per the Cochrane Collaboration, an 
international initiative that produces and dissemi-
nates systematic reviews of healthcare interven-
tions, “Meta-regression is rarely performed in 
Cochrane reviews and not an available option in 
Cochrane software, so should you have strong 
reason to include a meta-regression in your review, 
you will need the help of a statistician” [18]. 
As physicians, we need to educate ourselves about 
how statistical tools such as meta-regression func-
tion and then to advocate for their use if we expect 
to receive the highest quality data.
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So Is the Final Meta-Analysis Really 
Used to Make Clinical Decisions?

The Cochrane Collaboration has received recent 
attention regarding breast cancer screening guide-
lines. The USPTF has recommended that women 
receive mammograms starting at age 50, and at 2 
years intervals (as opposed to annually screening 
starting at age 40, as previously recommended) 
[19]. A 1993 review of annual screening mam-
mography estimated that it reduced breast cancer-
related mortality by 20–30% [20]. However, a 
2005 Cochrane review estimated that the relative 
risk reduction was 15%, the absolute reduction 
of risk was 0.05%, and that mammography may 
do more harm than good [21]. This Cochrane 
Collaboration systematic review from 2005 is 
being cited as evidence in favor of the recent sug-
gested changes in mammographic screening. 
In order to determine which review generated 
the best quality evidence, we have to explore how 
to critically assess the designs of the studies.

How to Tell a Good Systematic 
Review from a Bad One

For systematic reviews, Oxford’s CEBM provides 
a checklist of questions to help with this process 
[22]. In the first step, the question “What question 
did the systematic review address?” is asked. This 
is aimed at determining the basic parameters of 
study design: the nature of the test population; the 
intervention; what was compared; and what out-
come resulted. The second question, “Is it unlikely 
that important, relevant studies were missed?,” is 
posed to help determine whether or not the cre-
ators of the meta-analysis found most of the stud-
ies on the topic. This should include a search of 
major bibliographic databases, a search of refer-
ence lists from relevant studies, and contact with 
experts to inquire about unpublished studies. The 
search “should not be limited to the English lan-
guage and should include medical subject heading 
(MeSH) terms and text words.” The third question, 
“Were the criteria used to select articles for inclu-
sion appropriate?,” involves determining whether 

the studies selected by the creators are of good 
quality. In a good systematic review, the inclusion 
and exclusion criteria of the individual studies 
“should be clearly defined a priori, and the eligibility 
criteria used should specify the patients, interven-
tions, or exposures and outcomes of interest.” 
In many cases, the type of study design will also 
be a key component of the eligibility criteria. The 
fourth question “Were the included studies suffi-
ciently [internally] valid for the type of question 
asked?” attempts to uncover systemic reviews that 
are based on poor-quality data. The fifth question 
“Were the results similar from study to study?” 
deals with determining if the results of the indi-
vidual studies are similar enough to combine.

As noted previously, the USPTF uses the fol-
lowing criteria when determining the internal 
validity of an individual systematic review:

Comprehensiveness of sources considered/• 
search strategy used.
Standard appraisal of included studies.• 
Validity of conclusions.• 
Recency and relevance are especially impor-• 
tant for systematic reviews [7].

Typically, What Types of Studies 
Generate the Best Evidence?

The sine qua non of scientific study is the pro-
spective, randomized, controlled, double-blind 
(PRCDB) study, a type of RCT. A PubMed search 
for “randomized controlled” yields 358,053 arti-
cles. The oldest of these is an article titled 
Interactions between pharmacodynamic and 
placebo effect in drug evaluations in man by 
Modell and Garrett, published in the February 
1960 edition of Nature. The idea behind the 
PRCDB design is simply that a group of subjects 
is intervened upon and that the group is compared 
to a group not receiving intervention in an envi-
ronment free from tampering (intentional or 
otherwise). The prospective, double-blind, and 
randomization design of such studies attempts to 
minimize subjectivity. Retrospective studies are 
plagued by problems related to data retrieval, 
incomplete records, and internal biases. Studies that 
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are not blinded may be led astray by unintended 
(and often unconscious) interpretation biases. 
Nonrandomized studies may generate evidence 
that is reflective of the patient characteristics 
rather than by the intervention imposed on the 
test and nontest groups. A great deal of time and 
effort may be dedicated to minimizing these con-
founding variables that disturb and obscure the 
primary purpose of the study, to determine the effect 
of the imposed intervention.

Are There Any More Comprehensive 
Evidence-Level Tables in Existence?

The University of Oxford Centre for Evidence-
based Medicine (CEBM) is a body that was 
assembled to promote evidence-based health care 
in the United Kingdom. One of its roles is to 
stratify the quality of evidence coming from vari-
ous study types. The CEBM has published a 
comprehensive table which stratifies evidence 
into ten levels (the rows of the table): 1a–c, 2a–c, 
3a–b, 4, and 5 [16]. There are five columns, each 
representing a different parameter of patient care 
for which a physician may seek guiding evidence. 
These correspond to: therapy/prevention, etiol-
ogy/harm; prognosis; diagnosis; differential diag-
nosis/symptom prevalence study; and economic/
decision analysis. The study type that is assigned 
to each level varies by column. For example, for 
the highest level of evidence for guiding therapy/
prevention, etiology/harm is listed as the system-
atic review of randomized controlled trials. The 
highest level of evidence for differential diagno-
sis/symptom prevalence study is the systematic 
review of prospective cohort studies. There are 
50 individual fields in the chart and 41 different 
study types assigned to the fields.

The part of the chart most useful to patholo-
gists is the column corresponding to diagnostic 
studies. Within this category, level 1a is system-
atic review of studies (with homogeneity) as 
well as the clinical decision rule involving 1b 
studies from different clinical courses. Level 1b 
is the validating cohort study with good refer-
ence standards or the clinical decision rule tested 

within one clinical center. Level 1c encompasses 
tests that exhibit specificity so great that a posi-
tive result rules a diagnosis in, or sensitivity so 
great that a negative test rules a diagnosis out. 
Level 2a is a homogenous systematic review of 
diagnostic studies that are level 2 or higher. 
Level 2b is an exploratory cohort study with 
good reference standards or a clinical decision 
rule. Level 3a is the homogenous systematic 
review of studies determined to be level 3b or 
better. Level 3b is the nonconsecutive study or a 
study without consistently applied reference 
standards. Level 4 is the case–control study with 
a poor or nonindependent reference standard. 
Level 5 is the expert opinion without explicit 
critical appraisal, or based on physiology, bench 
research or “first principles” [16]. This is illus-
trated more simply in the evidence pyramid 
described earlier.

Best Evidence in the Pathology 
Literature.  How Good Is It?

Pathologists are at a distinct disadvantage regard-
ing the quality of the evidence we rely upon. As a 
group, pathologists generally use data that are 
generated by studies that fall within the bottom 
reaches of the evidence pyramid. Pathologists are 
both aided and disadvantaged by large volumes 
of archived material: while this provides ample 
fodder for research, it means pathologists rely 
heavily on retrospective studies. Retrospective 
studies are universally accepted to generate evi-
dence of lower quality than prospective studies 
due to the loss of data that inevitably occurs rela-
tive to prospective studies. Sometimes this is 
unavoidable. Some diseases are rare or progress 
very slowly to hinder accrual of significant num-
ber of cases or arrive at the final outcome. When 
especially uncommon diseases are encountered, 
it may be that there are not enough cases in exis-
tence to derive statistically significant results. 
This often leads to the generation of case studies 
and case series, which are considered by most to 
be of even lower quality evidence than retrospec-
tive studies.
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Should Pathologists Concern 
Themselves with Understanding 
only the Studies that Exclusively  
Aim to Answer Questions  
Pertaining to Diagnosis?

In addition to deriving the best diagnosis, the 
pathologist is also responsible in part for direct-
ing the course of patient care. As the clinical 
colleagues of pathologists feel increasingly over-
whelmed by mounting volumes of data, the pathol-
ogist is relied upon more heavily in this capacity. 
As per the concept described by Sinard and 
Morrow, the pathologist is at the center of receiv-
ing evidence from a multitude of sources and is 
responsible for integrating these elements into 
the best information in an effort to properly guide 
patient care [23]. In order to do this, the patholo-
gist must be familiar with the literature of other 
branches of medicine as well as pathology. This 
is especially critical in the case of the expert. The 
best anatomic pathology data come from meta-
analyses of cohort studies (randomized controlled 
trials are rare), and for this reason, the expert 
must be familiar with clinical literature (in which 
randomized controlled trials and meta-analyses 
of such trials are common). The expert should be 
familiar with the available literature and under-
stand which studies have generated higher quality 
data and why this is the case.

Are Different Strata of Evidence 
Preferable for Different Applications 
in Pathology Research?

The standard of the PRCDB has historically been 
held above the rest. The PRCDB is not necessar-
ily the best study type for many types of research 
questions. According to the guidelines published 
by the USPTF (which includes proper design 
with prospective and blinded characteristics), the 
highest quality data come from PRCDBs only 
when considering studies that examine the 
“ benefits or harms of various interventions” [14]. 

The USPSTF notes that “RCTs cannot answer all 
questions” [14], which implies that studies other 
than RCTs are better employed to answer those 
questions. The CEBM’s stratification strategy is 
another example of an algorithm that does not 
rank the RCT above all other studies. In fact, sys-
tematic reviews that do not include RCTs are 
ranked higher.

The PRCDB study is not the highest rated 
study type for determining diagnosis or progno-
sis (many systems rank it as the highest level of 
evidence only when the questions asked pertain 
to therapy or harm). It is difficult to understand 
why any study would benefit from not being ran-
domized or controlled. However, real-world limi-
tations may cause some researchers to abandon 
the PRCDB when investigating a diagnostic test 
when the potential harm to patients as a result of 
an incorrect diagnosis is considered. The aim of 
such studies is to determine the accuracy of a 
diagnostic test and a control group is essential to 
developing tests that accurately diagnose dis-
eases. However, such studies may not be appro-
priate or justifiable if the potential harm of the 
diagnostic test in the test and control groups is 
considered.

A close approximation of a randomized, con-
trolled, and blinded study in pathology may be 
constructed in the case of a hypothetical IHC 
assay being investigated to determine its useful-
ness in the diagnosis of mesothelioma. Pathologist 
“X” applies a current gold standard in identifying 
cases of mesothelioma as well as mimics such as 
reactive mesothelial hyperplasia. Pathologist “X” 
randomly separates them into two groups and 
applies the IHC stain to one group. Pathologist 
“X” gives pathologist “Y” slides of the two 
groups. Pathologist “Y” determines if mesothe-
lioma or reactive mesothelial hyperplasia is pres-
ent or absent. After pathologist “Y” records his 
answers, the diagnoses of pathologist “X” based 
upon the gold standard are compared to the inter-
pretations of pathologist Y who applied the IHC 
assay. The result of this comparison measures, at 
least in part, the usefulness of the IHC assay in 
discriminating mesothelioma from reactive meso-
thelial hyperplasia.
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How Can a Pathologist Distinguish  
a Good Case–Control Study  
from a Bad One

The USPFT uses the following criteria when 
evaluating the internal validity of case–control 
studies. These criteria apply to treatment studies 
that employ a diagnostic test and therefore assume 
a certain level of accuracy in the diagnostic test.

Accurate ascertainment of cases.• 
Nonbiased selection of cases/controls with • 
exclusion criteria applied equally to both.
Response rate.• 
Diagnostic testing procedures applied equally • 
to each group.
Measurement of exposure accurate and applied • 
equally to each group.
Appropriate attention to potential confound-• 
ing variables [7].

How Can a Pathologist Distinguish  
a Good Case Series from a Bad One

Criteria for determining a good case series from a 
bad case series might include: number of cases in 
the series; the similarity of the cases with regard 
to the disease process, case selection and manner 
of accrual (e.g., consultation file bias); and 
whether or not the patients are treated similarly. It 
would also be advantageous to know follow-up 
or outcome endpoints.

How Can a Pathologist Distinguish  
a Good Expert Opinion  
from a Great One

Determining a good expert opinion from a great 
one is highly subjective. Miriam-Webster defines 
“expert” as “having, involving, or displaying spe-
cial skill or knowledge derived from training or 
experience” [1] and opinion as “belief stronger 
than impression and less strong than positive 
knowledge” [1]. Given this, one might want to 
know if the expert’s opinions are skewed more 
towards knowledge or impression. The expert’s 

reputation in the field may give a glimpse of how 
weak or strong others perceive to be the expert’s 
reasoning and knowledge. It might be advanta-
geous to ascertain how often the expert has been 
proven to be correct. This may be difficult or 
impossible, but in some instances may be based 
on prior experience relative to outcome in cases 
previously referred for expert opinion. An addi-
tional indicator may be how extensively the 
expert has published on the topic, the number of 
relevant cases involved in these publications, and 
if these publications are recent.

Summary

Most of the experience in evidence-based medi-
cine has been derived from clinical medicine that 
seems more easily suited to the rigors of the 
higher tiers of quality. In pathology, it is difficult 
to apply many of the stringent requirements nec-
essary to generate high quality. For example, 
there is some debate over what tests should be 
used to distinguish squamous cell carcinoma of 
the lung from other types of non-small cell carci-
noma, as the former may be associated with 
severe pulmonary hemorrhage when treated with 
recently developed agents which inhibit angio-
genesis [24]. Should the identification rely only 
on routine histologic criteria (keratinization and 
intercellular bridges), or should it include a group 
of IHC studies such as p63, TTF-1, and high 
molecular weight keratin antibodies without 
regard to the presence of morphologic features of 
squamous differentiation? Obviously, the patient 
selection for this new therapy differs depending 
on the diagnostic test. One manner to obtain best 
evidence regarding the diagnostic test would 
include two randomized groups of patients of 
similar characteristics selected but distinguished 
by how the carcinoma is characterized (by mor-
phology alone or by the use of the IHC tests). The 
pathologist could be assigned to one study group 
only and blinded to the other group as well as 
outcome. The outcome would be the frequency of 
pulmonary hemorrhage in the two groups. Such a 
study is difficult to envision as a viable manner of 
determining which diagnostic criteria are best in 
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predicting the outcome for both obvious, serious 
ethical as well as logistical reasons. On the other 
hand, it remains unknown if patients are unneces-
sarily excluded from receiving antiangiogenesis 
factors in the treatment of lung carcinoma based 
on the IHC studies without consideration of mor-
phology. With the introduction of new therapies 
and diagnostic tests including molecular and 
cytogenetic assays, this scenario may become 
common place.

Nevertheless, there are effective strategies to 
improve the quality of evidence in pathology 
which have been illustrated in this chapter, build-
ing upon the cornerstones of observation and 
clinical correlation which have heretofore defined 
much of what we know as pathologists about dis-
ease and diagnosis.
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Probability

The notion of probability began with questions 
regarding games of chance during the seventeenth 
century, so that the probability of an event can be 
defined as the chance of observing that event. In 
a more experimental mode, probability relates to 
the relative frequency of observing an outcome 
after many repeated trials. For example, suppose 
we  perform an experiment and observe an out-
come E. Now let us repeat the experiment n times 
and tally the number of times E occurs to be m. 
The probability of E, P(E), would be estimated as 
m/n. In this manner, the probability of the out-
come could be defined as the limit of m/n when n 
becomes infinite.

In the twentieth century, however, probability 
was redefined in set theoretic and mathematical 
terms. What follows is an abbreviated version of 
this mathematics. If we have a discrete set, S, of 

all possible observed events, then the  probability 
of observing an event E is symbolized as P(E). 
P(E) must be a real number between 0 and 1. 
The probability of any event in S must be 1, that 
is, P(S) = 1. The probability of no event in S is 0. 
If the event E does not happen, then this is 
also an event that is termed “not E” or some-
times  symbolized as ~E. The probability of ~E 
is given as:

= −P(~ E) 1 P(E).

The odds of an event E is defined as the ratio 
of the probability of E divided by the probability 
of ~E, or as:

= −Odds (E) P(E) / (1 P(E)).

Finally, if there are two events E
1
 and E

2
, the 

probability of observing either E
1
 or E

2
 is:

= + −1 2 1 2 1 2P(E or E ) P(E ) P(E ) P(E  and E ).

Here, P(E
1
 and E

2
) is the probability of observ-

ing both events. Two events, E
1
 and E

2
, are mutually 

exclusive if the probability of observing both is 
zero, i.e. P(E

1
 and E

2
) = 0.
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Statistical Independence

Two events E
1
 and E

2
 are statistically indepen-

dent if and only if the probability of observing 
both is the product of each of their separate prob-
abilities, that is, if and only if:

= ×1 2 1 2P(E  and E ) P(E ) P(E ).

This is the only true notion of statistical inde-
pendence. When we read that variables like tumor 
stage and grade provided “independent”  prognostic 
information, such conclusions and wordings are 
most often wrong, because variables important to 
survival are often codependent, not statistically 
independent. What they may provide is additive, 
not independent, information.

Conditional Probabilities

Conditional probabilities are of great importance 
in medicine, including pathology. For example, 
sensitivities, specificities, and positive predictive 
values are examples of conditional probabilities. 
Using a general approach, consider the two events 
E

1
 and E

2
. The probability of observing event E

2
 

given that E
1
 has already been observed is the 

conditional probability P(E
2
 | E

1
). If the two events 

are the presence of a positive laboratory test T+ 
and the presence of a particular diagnosis D+, 
then 100 × P(T+ | D+) is the sensitivity of the test 
for the diagnosis (expressed here as a percent). In 
other words, the sensitivity of the test T is the con-
ditional probability that T is +, given the presence 
of the diagnosis D. (In what follows, the 100× will 
be omitted, and the conditional probabilities will 
be expressed as fractions rather than percents.) 
Table 4.1 lists and defines several commonly used 
conditional probabilities for tests and diseases.

One can also form ratios of these conditional 
probabilities. For example, the relative risk is 
defined as the positive predictive value of the test 
divided by the probability of a false negative 
test or:

Relative risk P(D | T ) / P(D | T ).= + + + −

And the likelihood ratio is defined as the 
sensitivity divided by the probability of a false 
positive test or as:

= + + + −Likelihood ratio P(T | D ) / P(T | D ).

ROC Curves

A graphical tool that has been helpful for evaluating 
new tests in clinical medicine is the ROC curve. 
ROC stands for receiver operator curve, and it 
was used in World War II to evaluate the abilities 
of plane spotters to classify aircraft as either 
friendly or enemy. In medicine, the ROC is 
formed by plotting sensitivity against 1-specificity. 
In other words, the vertical axis is P(T+ | D+) and 
the horizontal axis is 1 − P(T− | D−). Furthermore, 
1-specificity is the same as the probability of a 
false positive test. Consequently, a perfect diag-
nostic test – one with sensitivity of 1 and a false 
positive probability of 0 – would appear as 
single point in the upper left corner of the ROC. 
An example of an ROC is the following plot, 
which demonstrates the value of serum PSA for 
the diagnosis of prostate cancer (Fig. 4.1).

The points on the curve (Brawer et al.’s data) 
and angles in the line (Catalona et al.’s data) are due 
to the use of different cutpoints in serum PSA for 
the diagnosis of prostate cancer [1, 2]. For example, 
locations on the ROC in the lower left side of the 
plot are for cutpoints at high values of serum PSA, 
where the sensitivity is low and the specificity high. 
Locations on the ROC in the upper right side of the 
plot are for cutpoints at low values of serum PSA, 
where the sensitivity is high and the specificity low. 
The straight line on the plot indicates ROC  locations 

Table 4.1 Conditional probabilities in pathology

Sensitivity of test T for diagnosis D: P(T+ | D+)
Specificity of test T for diagnosis D: P(T− | D−)
Probability of false positive test T: P(T+ | D−) 

= 1 − P(T− | D−)
Probability of false negative test T: P(T− | D+) 

= 1 − P(T+ | D+)
Positive predictive value of test T for 
diagnosis D:

P(D+ | T+)

Negative predictive value of test T for 
diagnosis D:

P(D− | T−)
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for a test that is not diagnostically helpful, that is, 
where sensitivity equals 1-specificity. In fact, the 
further the curve lies above this line, the better will 
be the test. Higher ROC curves also imply larger 
areas under the ROC curve, and this area, which 
commonly ranges from 0.5 to 1.0, is often used as 
a measure of a good test.

Bayes Theorem or Rule

Thomas Bayes was a Presbyterian minister who 
lived in England in the eighteenth century, and he 
also was a mathematician with interests in calcu-
lus and numerical series. But he is best known for 
his formula. Although he developed the rule to 
solve a problem dealing with billiard tables, it is 
seen most clearly in set theoretic notation. What 
Bayes’ rule allows us to do is to estimate the pos-
itive predictive value of a positive test T+ for a 
diagnosis D+ by using the sensitivity and under-
lying probabilities of T+ and D+ as follows:

P(T | D ) P(D )
P(D | T ) .

P(T )

+ + × +
+ + =

+

Here, P(D+) is the a priori probability of the 
disease without consideration of the test T. The 
denominator P(T+) is the a priori probability of a 

positive test, and if there are just two possibili-
ties, D+ and D−, it can be calculated as:

P(T ) P(T | D ) P(D )

P(T | D ) P(D )

sensitivity prevalence

(1 specificity) (1 prevalence)

+ = + + × +
+ + − × −

= ×
+ − × −

Thus, if one knows the sensitivity and the spec-
ificity of a test and the prevalence or incidence of 
the disease, then one can estimate the positive 
 predictive value of the test for the disease.

Random Variables

In the foregoing, we have talked of probability of 
events such as E

1
, E

2
, or of T+ and D

x
+, but in fact 

many events of interest are numerical. We call such 
numerical events random variables, and in what 
follows, we will use the symbol x to represent a 
generic random variable. Examples of random 
variables include the Gleason score for prostate 
cancer, the Breslow thickness for malignant mela-
noma, and the values of many clinical chemistry 
results such as serum PSA. Random variables can 
be classified as discrete or continuous. Discrete 
random variables include binary ones, which take 
just two values like 0 or 1, or yes or no. Discrete 
random variables can also be categorical and 
ordered, and an example is the Gleason score which 
takes the integer values of 2–10. Continuous ran-
dom variables, by contrast, can have an infinite 
number of values, and examples include serum Na, 
serum creatinine, and serum PSA.

Probability Distributions for Discrete 
Random Variables

For a discrete random variable like the Gleason 
score, the probability that the Gleason score takes 
a particular numerical value is called its probabil-
ity distribution, which we symbolize here as f(x). 
In other words, the probability that x takes the 
value of a  is written as:

= α = αP(x ) f( ).
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Fig. 4.1 ROC plot of sensitivity versus 1-specificity for 
serum PSA and the diagnosis of prostate cancer. The data 
come from studies by Brawer et al. (points) [1] and Catalona 
et al. (curved line) [2]. For each point and each angle in the 
curve, a different cutpoint in serum PSA was used. The 
straight line indicates the locations where tests are not 
 helpful, that is, where sensitivity equals 1-specificity
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For a population of 891 tissue samples of 
prostate with cancer (data collected by the 
author), the probability distribution for the 
Gleason score f(Gleason score) took the follow 
values: f(2) ~ 0, f(3) ~ 0, f(4) = 0.002, f(5) = 0.016, 
f(6) = 0.32, f(7) = 0.54, f(8) = 0.063, f(9) = 0.053, 
and f(10) = 0.0067. Notice that the values of 
f(Gleason score) sum to approximately 1. This 
distribution function is illustrated in the histo-
gram in Fig. 4.2.

The Binomial and Poisson Probability 
Distributions for Counted Random 
Variables

Two mathematical forms appropriate for discrete 
random variables that are counted phenomena are 
the binomial and Poisson probability distribution 
functions. These are of special interest to pathol-
ogists, because both can deal with counts of cells. 
For example, if one counts n cells and observes 
that x number of these cells stain positive for an 
immunohistochemical marker, then the fraction 
of cells with staining would be estimated as x/n. 
If the underlying probability of observing a cell 
with staining is symbolized as q, then the bino-
mial distribution for the probability of observing 
x cells with staining is given as:

(x) (n x)f(x;n, ) c (n,x) (1 ) ,−θ = × θ × − θ

where C(n,x) stands for the number of combinations 
of n things taken x at a time. C(n,x) is calculated as:

C(n,x) n! /{x! (n x)!}= × −

and ! is the symbol for factorial function.
The Poisson probability distribution is given 

as:

θ × × −θ ×
θ =

x( n) exp( n)
f(x;n, ) .

x!

Here, exp stands for the exponential function. In 
practice, the binomial and Poisson probability dis-
tribution functions agree closely with one another, 
especially if n exceeds 20 and q is less than 0.05. 
The Poisson function, however, can be applied to 
situations when the counts of x are expressed as 
number per area. An example comes from primary 
cutaneous melanoma for which the mitotic count is 
expressed as number per square millimeter. All one 
needs to do is to substitute area for n in the above 
equation.

Probability Distributions for Continuous 
Random Variables

If the random variable x is continuous, then it can 
take an infinite number of values, and its proba-
bility distribution must rely on calculus. Instead 
of writing the probability that x takes a certain 
value a as P(x = a), we are restricted to consider, 
for example, the probability that x £ a which we 
write as an integral as follows:

≤ α = ∫P(x ) f(x) dx.

Here, the limits of the integration are from – ¥ 
to a, and once again f(x) is the distribution function 
for x. Distribution functions commonly used for 
continuous random variables include the normal, 
the log-normal, the chi-square, and the exponen-
tial. The log-normal and exponential distribution 
functions are particularly suitable for continuous 
random variables used in pathology because they 
deal with random variables that always take posi-
tive values, and this is the case for many continu-
ous variables in clinical medicine. For example, 
the following bar graph shows the observed 
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Fig. 4.2 Frequency distribution of cases of prostate  cancer 
according to their Gleason grading scores (the author’s data)
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 frequency distribution for values of serum PSA 
taken from a study by Morgan et al. [3]. The 
smooth line is a superimposed fit obtained by 
using the exponential distribution function 
Fig. 4.3. This distribution demonstrates that for 
most men with negative biopsies, PSA is less than 
5 ng/mL.

Distribution Functions of Two Random 
Variables and Statistical  
Independence

If there are two random variables, x and y, then 
the distribution function for observing both is 
symbolized as f(x,y). Following the same logic 
used for independent events, two random vari-
ables, x and y, are statistically independent of one 
another if and only if:

f(x,y) f1(x) f2(y),= ×

where f1(x) is the distribution function for x and 
f2(y) is for y.

Independent Samples

If we observe a random variable, x, on each patient 
in a study of n patients, we can symbolize the entire 
sample as x

1
, x

2
, x

3
, … x

n
. For such a sample to be 

a random sample, the joint probability  distribution 
of observing x

1
, x

2
, x

3
, …, x

n
 should be given as:

( )… = ∏1 2 3 nf x ,x ,x , x fi(xi).

(Here, Õ is a symbol for product, and the index i 
goes from 1 to n.) In other words, to comprise a 
random sample, the joint distribution function 
should equal the product of all the individual distri-
bution functions for the individual patients. In short, 
the patients and their random variables should be 
statistically independent from one another.

Statistics

Statistics are numerical summarizing measures 
of random variables taken from a (usually ran-
dom) sample as described above. Examples of 
statistics include the mean, median, variance, 
standard deviation, the t statistic, the F statistic, 
and the chi-square statistic.

Statistical Hypothesis Testing

Statistical testing most commonly involves making 
what is called the null hypothesis. For example, if 
we have observed two random variables, x and y, 
and if we suspect that these two are related to one 
another, then we begin the process with the null 
hypothesis that there is no such relationship. Having 
made the null hypothesis, we then apply a statisti-
cal test or model to the data and calculate a statistic, 
s. Under conditions of the test or model, we obtain 
the probability of observing s if the null hypothesis 
is true. This probability is called the p value. If the 
p value is low (typically less than 0.05 or 0.01), we 
conclude that the null hypothesis is unlikely and 
reject it. In other words, we accept the alternative 
hypothesis, which in the above example is that x 
and y are related to one another. If there are multi-
ple random variables involved in the study, then a 
multivariable model and analysis may yield multi-
ple statistics and multiple p values.

The p value is also known as the probability 
of making a Type I error, which is defined as 
the error of rejecting a null hypothesis that is in 
fact true. Thus, many researchers choose low 
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Fig. 4.3 Frequency distribution for values of serum PSA 
taken from data reported by Morgan et al. [3]. The smooth 
line is a superimposed fit obtained by using the exponential 
distribution function
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 thresholds for the p value, such as 0.01, in order 
to make their Type I errors unlikely.

Type II Errors, Statistical Power, 
and Sample Sizes

If there is a Type I error, then there must be a Type 
II error, and it is defined as the error of rejecting 
the null hypothesis when in fact it is true. The 
probability of making a Type II error is often sym-
bolized as b. Naturally, researchers desire to make 
b small. Statistical power equals 1 − b, but is often 
difficult to calculate. Researchers minimize b by 
choosing statistical tests that are naturally power-
ful and by increasing the number of cases or 
patients that they are studying, because the larger 
the sample size, the smaller will be the b. In gen-
eral, numbers of cases or patients less than 100 are 
sufficient for exploratory analyses, but usually 
numbers in the 100s will be required for definitive 

results. Numbers in the 1,000s will allow statisti-
cal models to include multiple important random 
variables, and such models, if validated with new 
data, may then provide prognostic algorithms that 
can be applied to new patients.

Overview of Common Statistical Tests

To a large extent, the choice of statistical test we 
use for analyzing data and testing the null hypoth-
esis depends upon the nature of the random vari-
ables in the data. For example, if there are two 
random variables and both are binary (i.e. they have 
just two values), then the chi-square or Fisher tests 
could be used. If there are two  random  variables, x 
and y, and if y is a dependent continuous  variable 
and x is a categorical one, then the t test or one-way 
analysis of variance (AOV) would be appropriate 
so long as y was approximately normally distrib-
uted. If y were not normal, then nonparametric tests 
like the Wilcoxon or Kruskal–Wallis tests could be 
used. If y is a dependent continuous random vari-
able and there are several continuous or categorical 
explanatory variables x

1
, x

2
, x

3
, etc., then regression 

analysis is appropriate so long as the residual error 
measurements are approximately normally distrib-
uted. If y is a binary-dependent variable and there 
are several continuous or categorical explanatory 
variables x

1
, x

2
, x

3
, etc., then logistic regression is 

appropriate. If y is a failure time and there are sev-
eral continuous or categorical explanatory variables 
x

1
, x

2
, x

3
, etc., then the Cox proportional hazard 

model is appropriate. Table 4.2 summarizes fea-
tures for commonly used statistical tests.

Chi-Square Tests

The chi-square test has been the workhorse of med-
ical statistics for decades. It most often deals with 
two binary random variables, x and y. The data are 
typically presented in a 2 × 2 table as follows:

y

x
Negative Positive

Negative a b
Positive c d

Here, a is the count of patients negative for 
both x and y, b the count of those positive for  

Table 4.2 Features of commonly used statistical tests

Test Application

Chi-square Test for effects of two categorical 
variables on one another

Fisher exact Test for effects of two categorical 
variables on one another

t test Comparison of means of a 
continuous variable between two 
groups

Wilcoxon Nonparametric comparison of 
means of a continuous variable 
between two groups

One-way AOV Test for effects of one categorical 
variable on the mean of a 
continuous variable

Kruskal–Wallis Nonparametric test for effects of 
one categorical variable on the 
mean of a continuous variable

Two-way AOV Test for effects of two categorical 
variables on the mean of a 
continuous variable

Linear regression Test for effects of one or more 
explanatory variables on a 
continuous-dependent variable

Logistic regression Test for effects of one or more 
explanatory variables on a 
binary-dependent variable

Log-rank Test for effects of a categorical 
variable on survival time

Cox model Test for effects of one or more 
explanatory variables on survival 
time
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Table 4.3 Observed probabilities that patients had cancer 
of the prostate given a PSA value ³4 ng/mL

Study n ppv

Babaian 404 0.45
Catalona 750 0.34
Brawer 227 0.34
Morgan 5258 0.76

The data come from four different studies (Babaian et al. 
[4] Catalona et al. [2]; Brawer et al. [1]; and Morgan et al. 
[3]). The probability is listed as ppv, and the total number 
of patients is listed as n

2s (no. observed  no. expected) / no. expected.= ∑ -

Because under the null hypothesis, this s follows 
the chi-square distribution, the test is called the chi-
square test, and it can also be used for categorical 
random variables with more than two results. If 
there are r categories or possible values of y and c or 
possible categories for x, then the total number of 
possible categories using both variables is r × c; 
however, the numbers of observations in each com-
bined category or cell should exceed 5. The product 
(r − 1) × (c − 1) is called the degrees of freedom. 
When the estimated chi-square is sufficiently large, 
then the deviations of observed from expected num-
bers are high, and the null hypothesis is rejected.

When the counts of cases in the cells of the 
table are smaller than 5, then the statistic does not 
follow a chi-square distribution, and one must 
use an alternative test such as the Fisher exact 
test, which relies on the geometric distribution.

Sometimes the categorical observations of y 
and x variables are paired. This could happen 
when one evaluates two immunohistochemical 
stains on a set of tumors, one tumor from each 
patient. In such a study, the routine chi-square 
test would be inappropriate and one must use the 
McNemar variant of the chi-square test. Its chi-
square statistic relies on just the discordant results 
for each pair of staining results.

Another variant of the chi-square test applies 
when one questions whether the proportions of 
cases with a key result are the same across  several 
studies. This issue commonly arises in meta-
analyses. Before studies can be combined to pro-
duce an overall result, one must usually test if the 
studies are homogeneous in their design and in 
the way they recruited patients. For example, 
Table 4.3 lists observed probabilities that patients 
had cancer of the prostate given a PSA value 
³4 ng/mL. The data come from four different 

studies [1–4]. The probability is listed as ppv, 
and the total number of patients is listed as n.

Whereas the values of ppv in the first three 
studies appear reasonably close to one another, 
the value of 0.76 in the last study is approxi-
mately twice as high. Are these results signifi-
cantly different from one another? The test of 
equality of proportions can provide an answer. 
First, a weighted estimate of the overall propor-
tion positive is calculated. Then this estimate 
with its derived variance is used to once again 
calculate the difference between observed and 
expected values as above. The result gives another 
statistic with a chi-square distribution. In S-PLUS, 
this test is done with the call to prop.test, and for 
these data, it yielded a chi-square statistic of 358 
(p ~ 0) for the null hypothesis that the observed 
proportions were the same. Thus, we can con-
clude that there were significant differences 
between these four studies, and in fact, the design 
for the first three differed from that of the fourth. 
Whereas the first three assayed serum PSA in 
men all of whom underwent biopsy of the pros-
tate, the fourth collected PSA data from two pop-
ulations, one selected because they had a positive 
biopsy for prostate cancer and a control group 
that included many who did not have biopsies 

x and negative for y, c the count of those  negative 
for x and positive for y, and d the count of those 
positive for both x and y. The null hypothesis 
for this test assumes that y and x are statistically 
independent, that is, that P(y | x) = P(y) and P(x 
| y) = P(x). Then the software estimates the prob-
abilities P(y) and P(x) from the data and  without 
regard to each other. Next, the test compares the 

number of observed results for each category of 
y and x with that expected from the pooled 
 estimates of P(y) and P(x). Specifically, it forms 
ratios comprising the squared differences 
between observed and expected numbers divided 
by the expected number and sums these over 
the cells in the table to yield a statistic s as 
follows:
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done. Because the control groups in the first three 
studies included many men with BPH or other 
conditions which required biopsy, they also 
included many with elevated PSA but without 
cancer, and this had the effect of lowering the ppv 
in comparison with the fourth study.

Finally, the Mantel–Haenszel chi-square test is 
done to test for statistical independence between y 
and x when there is a third confounding variable 
present. The third variable could be the presence of 
another disease, a drug, or that the observations 
came from different institutions or overall catego-
ries. For example, Morgan et al. published the fre-
quencies of patients with prostate cancer (y variable) 
versus PSA levels >= 4 ng/mL (x variable), strati-
fied by eight categories of age and race [3]. 
A Mantel–Haenszel test for the relationship between 
presence of cancer and PSA, while controlling for 
these eight categories, yielded a chi-square value of 
2,519 and a p value of approximately 0, thus allow-
ing one to reject the null hypothesis of no associa-
tion between PSA and presence of cancer.

t Test

The t test is another long-used workhorse in statis-
tical analysis of medical data. Although its popu-
larity is now less than that for tests that can deal 
with multiple random variables, it continues to be 
used and has proven useful as a screening device 
for proteomic data. The t test is most commonly 
used to see if the means of a continuous random 
variable, y, are the same in two separate popula-
tions, and it requires that y be normally distributed 
and that its variance is the same in the two popula-
tions. Consider the following example.

In 2002, Petricoin et al. published a SELDI-
TOF analysis of the serum proteome on 50 
women with ovarian cancer and 50 women with-
out ovarian cancer [5]. The data comprised mass 
spectral patterns of intensities versus mass/charge 
ratio (M/Z). Figure 4.4 plot shows a portion of the 
spectrum with the mean intensities for the two 
groups of women (two lines on the plot).

Where the lines separate, the higher line 
shows the means for women with ovarian cancer.  
The question is whether these sites of separation 
are significantly so. A series of t tests was applied 

to the data, one for each value of M/Z, and the 
values for these t statistics appear in Fig. 4.5.

The graph now shows calculated values of the 
t statistic versus values of M/Z, and the upper and 
lower horizontal lines show thresholds for a p 
value of 0.01 in the t test. Consequently, in the 
region near M/Z values of 3,400, there were nega-
tive t values of such a magnitude that they fell 
beyond the p = 0.01 threshold. This result then 
suggested that there were serum proteins in this 
M/Z range which were likely to differ between 
women with and without ovarian cancer.

The t test is also commonly applied to paired 
observations of a continuous random variable, 
which may arise when a continuous random vari-
able is observed before and after some interven-
tion. Furthermore, even when the original random 
variable is not normally distributed, the differ-
ence between the paired values may be at least 
approximately normal, and in this circumstance 
the prerequisites for the t test are satisfied.

Parametric Tests and Normally 
Distributed Random Variables

Tests designed to be used on normally distributed 
random variables are often described as “ parametric” 
as opposed to “non-parametric”. In general, these 
parametric tests will be more powerful than their 
nonparametric counterparts. In other words, the 
parametric tests will yield lower p values for the 
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Fig. 4.4 A portion of mass spectral patterns of intensities 
 versus mass/charge ratio (M/Z) for two groups of women (two 
lines on the plot), one with ovarian cancer (upper line) and one 
without cancer (lower line) (data from Petricoin et al. [5])



494 Biostatistics 101

null hypotheses and will require fewer data to do so. 
Nevertheless, before using parametric tests, one 
should at least attempt to see if the random variables 
or their residual errors are normally distributed. For 
a given continuous random variable, the easiest way 
to do this is to plot its frequency distribution, see if 
it is symmetric (versus skewed) with the peak in the 
middle of the range, and to see that it is neither too 
flat nor too narrow. If the frequency distribution 
does not appear normal, then some transformation 
of the variable, such as the  logarithm or square root, 
may be normally distributed. In that case, the para-
metric tests can still be applied. For example, the 
Breslow thickness in over 1,000 cases of cutaneous 
melanoma has the following approximately skewed 
and exponential frequency distribution (Fig. 4.6).

Yet, using the natural logarithm converts 
tumor thickness to an approximately normally 
distributed as seen in Fig. 4.7.

In some tests like AOV and regression analy-
ses, it is more important that the residual error 
values are normally distributed than to have the 
original dependent random variables be normal. 
Finally, in general, regression analyses do not 
require that the explanatory variables be normal.

One-Way Analysis of Variance

AOV provides a way to see if the means of a nor-
mally distributed random variable y are the same 
across several levels of a categorical variable x. 
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Fig. 4.5 Plot of t statistics versus M/ Z for the portion of 
the M/ Z spectrum in Fig. 4.4. The t statistic evaluates the 
difference in mean intensities between women with 
ovarian cancer and those without cancer, and this is done 

for each value of M/ Z in the spectrum. The upper and lower 
lines on the plot show where values of t indicate significant 
differences in means for the two groups of women at a  
p value of 0.01
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Fig. 4.6 Frequency distribution of tumor thickness in 
malignant melanoma (the author’s data)
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Fig. 4.7 Frequency distribution of natural logarithm (Log) 
of tumor thickness in malignant melanoma (the author’s data)
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For example, common familiarity with  cutaneous 
melanoma suggests that the thickness should be 
positively related to Clark levels 2–5. Exami-
nation of the cases used in the above frequency 
distributions showed that the mean thickness for 
levels 2–5 were respectively 0.46, 1.65, 1.94, 
2.50, and 6.29 mm. AOV of the logarithm of 
thickness demonstrated that this association was 
significant (F statistic = 784, p ~ 0). Justifying 
use of the AOV model, the frequency distribu-
tion of the residual errors from the AOV showed 
a close approximation to normality as shown in 
Fig. 4.8:

Wilcoxon and Kruskal–Wallis Tests

The Wilcoxon test is the nonparametric counter-
part to the t test. In other words, it is appropriate 
for the null hypothesis that a continuous variable, 
y, is the same for two groups of patients, and it 
can deal with paired or nonpaired data. Its analy-
sis and results are based on ranks of y rather than 
the values of y directly, and it does not require y 

to be normally distributed. This test is equivalent 
to the Mann–Whitley test based on the calcula-
tion of a Uy2 statistic, which provides the num-
ber of times y is larger in one group than in the 
second.

The Kruskal–Wallis test is the nonparametric 
counterpart to one-way AOV and also does not 
require that the random variable or the residuals 
be normally distributed. This test is for the null 
hypothesis that the values of a continuous y vari-
able are the same for categories of an x variable. 
Like the Wilcoxon test, the Kruskal–Wallis test 
orders the values of y along a single virtual row 
and then sums the ranks for each category of x. It 
then computes an H statistic based on the sum of 
squared values of these ranks divided by the 
number of patients in each x category. If k is the 
number of categories of x, then H has an approxi-
mate chi-square distribution with k-1 degrees of 
freedom, so that the final test statistic is a chi-
square. In the melanoma data used above for the 
AOV, the Kruskal–Wallis test yielded a chi-square 
value of 434 and a p value of ~0.

Regression Analyses

Many statistical studies in pathology and medi-
cine deal with a response random variable, y, 
which is to be related to explanatory random vari-
ables, x

1
, x

2
, …, x

n
. This is the domain of regres-

sion analyses. The y variable is the dependent one, 
and the x variables are usually called the indepen-
dent variables, explanatory variables, or covari-
ates. Examples of regression analyses include 
linear regression, general linear model analysis, 
logistic regression analysis, and the Cox propor-
tional hazard model for survival time. In these 
examples, some function of y, f(y), is related to a 
linear combination of the x variables as follows:
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Fig. 4.8 Frequency distribution of residual error values 
from the AOV of logarithm of tumor thickness according 
to Clark levels in malignant melanoma (the author’s data)

= + × + × + × +…+ × +0 1 1 2 2 3 3 n nf(y) b b x b x b x b x error.

Here, the b
0
 is an intercept, and the b

1
, b

2
, … , 

b
n
 are coefficients to be multiplied times their 

respective x variables. The x variables can be 

binary (e.g., 0 vs. 1), categorical like Gleason 
grade, or continuous; and if continuous, they 
need not be normally distributed.
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In linear regression, even some degree of 
 nonlinearity can be accommodated. For example, 
one can use interaction terms that combine the 
effects of two or more explanatory variables. For 
example, adding a variable x

4
 equal to the prod-

uct x
2
 × x

3
 would make it an interaction variable. 

Such an interaction might apply when f(y) 
increases with positive x

2
, increases with x

3
, but 

does not increase as much when both x
2
 and x

3
 

are positive. In this example, coefficients b
2
 and 

b
3
 would be positive, but the coefficient b

4
 for the 

interaction variable x
4
 would be negative. Second 

and third powers of explanatory variables can 
also be used to accommodate nonlinearity in the 
relationship between y and the explanatory 
variables.

Linear Regression Analysis

In linear regression, the dependent y variable is 
continuous and may be used as it is or trans-
formed but it does not need to be normally dis-
tributed. By contrast, the error term must be 
approximately normally distributed, and in this 
circumstance, linear regression results in t statis-
tics for the null hypotheses that the b coefficients 
in the regression equation are 0. Large values of 
the t statistics imply low p values, and then allow 

us to reject the null hypothesis of no association 
between y and the respective x variable. For 
example, consider the relationship between 
mitotic rate in cutaneous melanoma and tumor 
thickness. Mitotic rate in melanoma is usually 
expressed as number per square millimeter, and 
thickness as millimeters. A plot of square root of 
mitotic rate versus log(thickness) for over 1,000 
patients with melanoma appears in Fig. 4.9, and 
in spite of scatter in the data, there is a hint of a 
positive relationship.

Linear regression analysis of this data uses the 
following equation:
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Fig. 4.9 Plot of square root of mitotic rate (number per 
square millimeter) versus logarithm of tumor thickness in 
malignant melanoma (the author’s data)

Table 4.4 Linear regression of square root of mitotic rate 
in melanoma

Variable Coefficient t p Value

Intercept 0.989 24.3 ~0
log(thickness) 0.568 12.0 ~0
Ulceration 0.718  8.9 ~0

where Sqrt symbolizes the square root transfor-
mation, log is the natural logarithm, and ulcer 
takes the values 0 or 1. Table 4.4 shows the results 
of the linear regression.

These results, including the high values of t 
and low p values, demonstrate that mitotic rate is 
not independent of either thickness or ulceration. 
Examination of the residuals from the analysis 
shows an approximately normal distribution as 
shown in Fig. 4.10.

(A histogram of the error residuals should be 
routinely examined to see if the assumption of 
normally distributed residuals is justified.) The 
breadth of the residual histogram hints that the 
linear model explained a fraction of the scatter 
in the former plot, and the R2 value from the 

= + × + × +0 1 2Sqrt(mitoses) b b log(thickness) b ulcer error,
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 regression analysis tells us more specifically how 
much of the variance in the data was explained by 
the regression model. For this data, R2 was 0.23 
indicating that the model explained just 23% of 
the variance in the data.

General Linear Model (GLM)

The GLM is analogous to the linear regression 
model except that GLM does not assume that the 
residuals are normally distributed. Nevertheless, 
GLM does assume that the variance of the depen-
dent random variable, y, is constant. The GLM 
has the same linear form as in linear regression:

= + ×× + × + +…+ × +0 1 1 2 2 3 3 n nf(y) b b x b x b x b x error.

The y variables may be either continuous or 
categorical. Instead of obtaining a least squares fit 
to the collected data of {y, x

1
, x

2
, … } as done in 

linear regression, the GLM obtains estimates of 
the b coefficients to maximize a likelihood func-
tion, L, or its natural logarithm ln(L). The exact 
form of L depends on the nature of f(y). GLM 
obtains its solutions for the b coefficients through 
an iterative fitting procedure. As in linear regres-
sion the null hypothesis is that the values for the b 
coefficients are 0, and when this is the case, a like-
lihood ratio statistic has a chi-square distribution 
with the number of degrees of freedom equal to 
the number of x variables used in the model. The 
result is termed the “likelihood ratio test” for test-
ing the significance of one or more of the x vari-

ables. The next model to be discussed, the logistic 
model, provides an example. Others can be found 
in the McCullach and Nelder text [6].

The Logistic Regression Model

The logistic regression model deals with a depen-
dent random variable, y, which is binary, that is, 
either 0 or 1. In other words, logistic regression is 
appropriate when we want to know which x vari-
ables increase, or decrease, the chance of a diag-
nosis or an important clinical outcome. In logistic 
regression, the transformation of y, which is con-
sidered linear, is the natural logarithm of the odds 
as follows:

= = = + × + × + × +…+ ×0 1 1 2 2 3 3 n nf(y) log{odds (y 1)} b b x b x b x b x .

Because the odds (y = 1) is defined in terms of 
probability P(y = 1) as:

Odds (y 1) P / (1 P),= = −

the probability P can also be written as:

= = + −P(y 1) 1 /{1 exp( E)}

with E given as:

= + × + × + × +…+ ×0 1 1 2 2 3 3 n nE b b x b x b x b x .

Once again the null hypothesis is that the coef-
ficients b are equal to 0. Peduzzi et al. suggest 
that for the logistic analysis to produce reliable 
results, the data should include at least ten events 
for each x variable with event being defined as 
the smaller number of those with either y = 1 or 
y = 0 [7]. Because of the importance of this 

Error

300

200

100

0

500

400

–2 0 642

Fig. 4.10 Frequency distribution of residual error values 
from the linear regression analysis of how mitotic rate 
depends upon tumor thickness and ulceration in malignant 
melanoma (the author’s data)
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multivariable logistic model, three examples of 
its use on real data follow.

Logistic Regression Analysis of HPV 
DNA Testing in Women with ASCUS

Recently, Siddiqi et al. examined the results of 
hybrid capture two human papillomavirus DNA 
testing (HC2) in 8,195 women with atypical 
squamous cells of undetermined significance 
(ASCUS) in their liquid-based cervical sam-
ples.[8] The authors used the SurePath technique 
for 4,235 specimens and the ThinPrep technique 
for 3,960 specimens, and one of the goals of their 
study was to see if the technique affected a posi-
tive HC2 test. They stratified the women accord-
ing to six age groups and demonstrated that age 
affected the probability of a positive HC2 test. 
Then they ran six chi-square tests – one for each 
age group – to see if the technique affected the 
probability of a positive HC2 test within the age 
groups. They found that only in the group of 
women under 19 years of age was the HC2 test 
dependent on the technique (the ThinPrep tech-
nique yielded more positive HC2 results).

The data from this study comprise a single 
binary-dependent variable – a positive HC2 test – 
and 2 explanatory variables: age of the patient and 
the technique for the liquid-based PAP process-
ing. Consequently, the logistic regression model 
is ideal for this three variable data and has the 
advantage of analyzing all the data without break-
ing it into subsets or relying on multiple chi-
square tests and multiple p values. Furthermore, 
when there is one variable that strongly affects the 
outcome – in this case age – it is important to con-
trol for its effect while analyzing the effect of the 
variable of interest – in this case, the liquid-based 
technique. Consider, for example, the following 
plot of the probability of a positive HC2 versus 
median patient age in authors’ data (Fig. 4.11).

The smooth line shows the relationship and 
demonstrates that the probability of a positive 
HC2 decreases smoothly with increase in age. 
This plot also suggests that age should be used as 
a continuous variable, rather than categorized 
into six groups. Logistic regression analysis can 

deal with continuous variables like age, and for 
this data, the logistic regression analysis yielded 
the following results.

Variable Coefficient p Value
Age −0.0707 ~0
ThinPrep technique    0.0548 0.03

The negative coefficient of −0.0707 for age 
demonstrates that increased age was associated 
with decreased probability of a positive HC2, as 
the above plot shows, and the p value of approxi-
mately zero indicates that age was strongly asso-
ciated with the HC2 result. The positive coefficient 
of 0.0548 indicates that after controlling for the 
age effect, the ThinPrep technique resulted in 
more positive HC2 tests than did the SurePath 
technique, and that this difference was significant 
at a p value of 0.03. Thus, unlike the multiple chi-
square tests done by the authors, the multivariable 
logistic model was able to demonstrate a signifi-
cant overall effect of technique on the probability 
of a positive HC2 test.

Logistic Regression Analysis  
of Antiphospholipid Antibodies  
in Acute Coronary Artery Syndrome

To further illustrate the logistic regression model, 
consider the data published by Greco et al. regard-
ing the importance of antiphospholipid antibodies 
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Fig. 4.11 A plot of the probability of a positive hybrid 
 capture 2 human papillomavirus DNA testing (HC2) versus 
median patient age in the data reported by Siddiqi et al. [8]
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(aPL’s) in patients with acute coronary artery syn-
drome [9]. They studied 334 patients who pre-
sented to their acute care facility with chest pain 
and suspected coronary artery syndromes. They 
categorized coronary artery disease (CAD) into 
six grades of increasing severity based on cathe-
terization data, and they recorded subsequent 
adverse outcomes, including adverse vascular 
events and deaths. In their results, they used pair-
wise statistical tests to demonstrate that aPL’s 
were associated with severity of CAD and that 
adverse outcomes were associated with aPL’s, 
with severity of CAD, and with aPL’s within some 
categories of CAD. But logistic regression analy-
sis offers the advantage of one statistical analysis 
of all the data to see how the binary event of 
adverse outcome depends on both aPL’s as well as 
CAD grade. For the analysis, severity of CAD was 
collapsed into 4 levels of a single variable coded 
(0–III, IV, V and VI), because just one adverse 
event occurred in the 0–III group. Presence of 
aPL was coded as absent (0) versus positive (1). 
The results appear in the following table.

Variable Coefficient p Value
CAD 1.03 5.2 × 10 − 8
aPL 1.3 6.9 × 10 − 4

The very low p values demonstrate first that 
these two, related variables can provide additive 
information about the probability of an adverse 
outcome. After controlling for the information that 
CAD provides, the logistic model results demon-
strate that aPL’s provide additional helpful infor-
mation. The positive coefficients demonstrate that 
both CAD as well as presence of aPL’s imply 
increased probability of an adverse outcome.

Finally, the coefficients of the logistic regres-
sion can be used to form a predictive model to be 
used for new patients as follows. Using the mod-
el’s intercept value, which was found to be −4.04, 
E can be calculated as

= − + × + ×E 4.04 1.03 CAD 1.30 aPL

and the probability P of an adverse outcome for a 
new patient’s values of CAD and aPL can then be 
estimated as:

=
+ −

1
P(adverse event)

1 exp( E)

(The intercept value may need to be adjusted 
to reflect the local prevalence of adverse events.)

Logistic Regression Analysis of Atypical 
Epithelium in the Prostate

A third example of logistic regression analysis 
comes from studies of atypical small glands (ASAP) 
and high-grade prostatic intraepithelial neoplasia 
(HGPIN) in needle biopsies of the prostate. In 2005, 
Schlesinger et al. published their experience with 
336 men who had either HGPIN or ASAP in an 
initial set of biopsies of the prostate and who subse-
quently had follow-up biopsies [10]. Importantly, 
there was not a  control group of men with follow-
up biopsies, but who had neither HGPIN nor ASAP. 
The question to consider is whether HGPIN adds 
information to the presence of ASAP regarding the 
outcome of cancer in the follow-up biopsies.  
A logistic regression analysis on their published 
data yielded the following results:

Variable Coefficient p Value
ASAP    0.512 0.012
HGPIN −0.16 0.65

The results suggest that in this restricted situ-
ation where all men had either HGPIN or ASAP, 
the presence of ASAP was associated with cancer 
in the follow-up biopsy, but HGPIN was not.

In their publication, Schlesinger et al. summa-
rized prior studies of HGPIN and ASAP, and in 
their summary, they demonstrated that the prob-
ability of cancer in the follow-up biopsy decreased 
with the time of the study [10]. The following 
plot shows the fraction of positive follow-up 
biopsies on the vertical axis versus the median 
study year on the horizontal axis, and the line for 
the trend in the data demonstrates that the proba-
bility of a positive follow-up biopsy decreased 
with time of the study (Fig. 4.12).

Thus, in the overall analysis, three variables 
seemed to be important: ASAP, HGPIN, and the 
time of the study cases. Because the logistic 
 regression model can easily accommodate 
 continuous variables such as time of study and 
easily accommodate three explanatory variables, 
I applied it to this summarizing data. (To do this, 
one must form a composite response variable that 
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combines the number of cases with cancer in the 
follow-up biopsy and the number of cases without 
cancer.) This analysis yielded the following results:

Variable Coefficient p Value
Median year −0.0639 ~0
ASAP    0.726 ~0
HGPIN    0.0577 0.77

Once again, logistic regression demonstrated 
that after controlling for the important variables of 
year of study and presence of ASAP, HGPIN was 
not related to a positive follow-up biopsy. This 
example also demonstrates how helpful the logistic 
model can be in meta-analyses of prior studies.

Introduction to Survival Analysis

Whereas logistic regression deals with a binary 
outcome, survival analysis deals with two out-
comes: a binary failure event like death and the 
time to the occurrence of that event. Survival data 
thus comprise the following categories:
Failure event: 1 if it occurred at the last observed 

time, 0 if it had not
Time of last observation: T
Explanatory regression variables: x

1
, x

2
, …, x

n

The most commonly studied failure event in 
medicine is death, but other binary failure events 
can be analyzed, such as tumor recurrence, metas-
tasis, and diagnosis of malignancy. Furthermore, 
the failure events need not be what we normally 

perceive as failures. For example, the event could 
be the achieving of a cure, the ending of symp-
toms, or the return to normal levels of some labo-
ratory test. Similarly, the time variable need not 
be time. Other positive, continuous variables can 
be used such as the value of serum PSA.

If the patient has failed by the last observed 
time, then the value of the event is 1, and the 
patient is said to be uncensored. If the patient has 
not failed at the last time, then the value of event 
is 0, and the patient is said to be censored at the 
last time. One of the great strengths of survival 
analysis is its ability to deal with censored 
patients, but there is a cost. In general, most of 
the results come from the uncensored patients. 
Data rich in censored patients provide few  helpful 
results, and Concato and Peduzzi et al. suggest 
that there should be at least ten uncensored 
patients for every explanatory variable [7].

The Survival Plot

Survival probability S(t) is defined as the probabil-
ity that survival time exceeds t. The most common 
way to illustrate S(t) is the Kaplan–Meier plot, 
which plots S(t) on the vertical axis versus time on 
the horizontal axis. For each time, the Kaplan–
Meier method considers the number of persons at 
risk and the number of persons who fail. Times of 
observed failures cause vertical drops in the plot, 
and times when patients are censored are often 
illustrated with short vertical lines. As an example, 
consider two studies of pleomorphic liposarcoma 
published by Gebhard et al. and by Hornick et al. 
[11, 12]. Altogether, these two studies comprised 
98 patients with follow-up. Forty were observed to 
die (uncensored), and 58 were living at last follow-
up (censored). The Kaplan–Meier plot of all 98 
appears as seen in Fig. 4.13.

The short vertical bars mark the times of last 
observation for the 58 censored patients, and the 
stair-step drops in the curve mark the times of 
death for the 40 uncensored patients. The faint 
lines above and below the curve indicate the esti-
mates of 95% confidence limits.

As time t increases in Kaplan–Meier plots, 
there are fewer patients available for the analysis, 
because most have been either censored or died. 

0.6

0.5

0.4

0.3

0.2

0.1

1990 200220001998199619941992
Median year of cases

0

F
ra

ct
io

n
 w

it
h

 c
an

ce
r 

in
 2

n
d

 b
io

p
sy

Fig. 4.12 Plot of the probability of prostate cancer in a 
second, follow-up biopsy of the prostate versus the median 
year of cases in studies summarized in the study by 
Schlesinger et al. [10]
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For example, in these two studies, less than 25% 
of the patients were observed past 64 months. 
What limited follow-up times does is to decrease 
the denominator of patients at risk for later times. 
Consequently, any deaths at these times cause 
steep drops in S(t). This is also why the 95% 
 confidence lines widen.

The Log-Rank Test for Equality  
of Survival Plots

In the above example of pleomorphic liposar-
coma, 48 patients were studied in France (the 
Gebhard et al. study) [11], and the remaining 50 
were  studied in either England or the USA (the 
Hornick et al. study) [12]. Before combining data 
from both studies, one needs to test to see if the 
study affected survival. For example, study biases 
of potential importance could include how differ-
ent pathologists in different countries defined and 
graded liposarcomas. The Kaplan–Meier plot can 
help by displaying survival curves for each study 
on the same graph as Fig. 4.13b: This plot shows 
that the survival curves for the two studies are 
quite close.

To statistically test the null hypothesis that 
there is no difference between these survival 
curves, we use the log-rank test, which is based on 
comparisons of observed versus expected deaths 
at the various times for the two studies. The 

expected deaths are formed by assuming there is 
no difference between the studies, so that their 
results can be combined into a multinomial table. 
Then, comparisons of observed versus expected 
numbers of deaths yield a chi-square statistic. For 
these two studies, the log-rank test yielded a chi-
square value of 0.7 and a p value of 0.4 suggesting 
that the null hypothesis of no difference is true.

Both studies of pleomorphic liposarcoma also 
classified the tumors into three levels: superficial 
(skin or subcutaneous), deep skeletal muscle, or 
internal viscera. The Fig. 4.14 survival plot dem-
onstrates how these levels affected survival.
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Fig. 4.13 (a, b) Plot of probability of survival versus time of follow-up in patients with pleomorphic liposarcoma 
reported by Gebhard et al. (study 1) and by Hornick et al. (study 2) [13, 14]
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Fig. 4.14 Plot of probability of survival versus time of fol-
low-up in patients with pleomorphic liposarcoma reported 
by Gebhard et al. and by Hornick et al. with survival broken 
into groups according to the level of tissue involved by 
tumor [13, 14]
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The plots suggest that pleomorphic liposarco-
mas located in skin and subcutaneous tissues 
have the best prognosis, that those located in deep 
viscera have the worst prognosis, and that those 
located in deep skeletal muscle have an interme-
diate prognosis. The way to test if these differ-
ences in survival are significant is to once again 
use the log-rank test, which yielded a chi-square 
value of 8.5 (p = 0.01). Thus, the combined data 
from the two studies validate the notion that the 
tissue level of origin for these sarcomas affected 
overall survival.

The Hazard Function

Next, consider the following survival plots of 
women with invasive ductal carcinoma of the 
breast sorted into two groups according to 
estrogen  receptor (ER) status (Fig. 4.15).

The data come from Pestalozzi et al.’s 
 collection of over 9,000 patients with invasive 
ductal carcinoma of the breast [13]. Although the 
two curves are close to one another and have sim-
ilar shapes, the ER-positive patients have higher 
survival probabilities in the first 10 years of fol-
low-up time. The slopes of these survival curves 
relate closely to something called the hazard 
function, h(t), which sometimes is called the 

force of mortality. We define the hazard function 
as follows:

= −h(t) d ln[s(t)] / dt,

where ln stands for the natural logarithm (ln) and 
the right side of the equation is the derivative of 
ln[S(t)] with respect to time. The minus sign 
implies that when the survival probability drops, 
the hazard function h(t) is positive. In other 
words, the higher and more positive the hazard 
function is, the faster the survival plot should 
drop. One can see this effect if one plots the haz-
ard functions for the women with ER-positive 
and -negative tumors as follows (Fig. 4.16):

The hazard function for ER-negative patients 
is much higher than that for the ER-positive 
patients in the first 5 years after diagnosis. After 
that period, the hazard for ER-negative patients 
drops suggesting that if a woman with ER-negative 
tumor survives 5 years, then her survival will 
improve. For ER-positive tumors, the hazard 
steadily increases in the first 5 years and then 
becomes nearly stable. In this way, the hazard 
function tells us much about the dynamics of sur-
vival after the diagnosis of breast cancer.
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Fig. 4.15 Plot of probability of survival versus time of 
follow-up in patients with invasive ductal carcinoma of the 
breast and broken into estrogen receptor (ER) positive and 
negative status. The plots were obtained from digitization 
of the data reported by Pestalozzi et al. [14]
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Fig. 4.16 Plot of hazard function versus time of follow-up 
in patients with invasive ductal carcinoma of the breast and 
broken into estrogen receptor (ER) positive and negative 
status. The hazard functions were obtained from curve fit-
ting analysis of the survival curves in Fig. 4.15 and using 
the foregoing equation as well as gamma functions to 
model the hazard functions. The accuracy of the hazard 
functions was then checked by showing that they regener-
ated the survival curves of Fig. 4.15 accurately
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The Cox Model

The most popular statistical model for analysis of 
survival was introduced by Cox in 1972 [14]. 
Since then it has increased understanding of 
prognostic factors and treatments for all forms 
of cancer. The model relates survival time to 

 multiple explanatory variables, symbolized once 
again as x

1
, x

2
, …, x

n
, and its analysis deals with 

ratios of hazard functions. If b
1
, b

2
, b

3
, …, b

n
 are 

fixed coefficients for the explanatory variables, h 
the hazard function and h0 an unspecified base-
line hazard function, then the Cox model solves 
the following regression equation:

= × + × + × + + ×0 1 1 2 2 3 3 n nlog(h / h ) b x b x b x ... b x .

Because the baseline hazard function, h
0
, is 

left unspecified, the Cox model is  semiparametric. 
The Cox model requires that hazard function 
ratios do not change with time – an assumption 
that can be checked, and it obtains solutions for 
b

1
, b

2
, b

3
, …, b

n
 through an iterative process that 

maximizes a partial likelihood function. As with 
other regression analyses, the null hypothesis is 
that the b coefficients are 0. In practice, the Cox 
model has been found to be robust, and its itera-
tive solution is completed within seconds on 
desk-top computers.

As an example, consider men with advanced 
prostate cancer. Whereas most men with prostate 
cancer die of other causes, a fraction have tumors 
that progress to eventually become refractory to 
hormonal therapy. At this stage, these men have 
rising values of serum PSA while on hormonal 
treatment, and most have boney metastases. One 
of the most important prognostic variables for this 
group of men is their clinical performance status 
(PS), which can be classified as 0 for normal, 1 for 
fatigue but without decrease in daily activities, 
and 2 for fatigue with impairment of daily activity 
but with less than 50% time in bed. In a group of 
575 men with hormone refractory prostate cancer 
studied by the author, the performance status was 
significantly associated with subsequent survival 
(p ~ 0 by log-rank test). However, other factors 
such as serum PSA are important, and before test-
ing new therapies for advanced stage of prostate 
cancer, it is important to control for all prognostic 
variables. The Cox model is ideal for this multi-
variable analyses. In three Cancer and Leukemia 
Group B (CALGB) studies, Cox model analysis 
yielded the following results [15–17].

Variable Coefficient(b) Exp(b) p Value
PS   0.497 1.64 5.5 × 10 − 12
Log PSA   0.0942 1.10 0.0011
Log 
hemoglobin

−1.27 0.281 0.00067

Study No. 2 −0.191 0.826 0.036

Log indicates that serum PSA and  hemoglobin 
were both transformed into natural logarithms, and 
exp(b) symbolizes the function of natural expo-
nentiation, i.e., 2.718 raised to the exponent b. The 
low p values for these four variables indicated that 
each provided additive information about survival. 
Furthermore, the lower the p value, the more 
important the variable. Thus, clinical performance 
status was most important, followed by serum 
hemoglobin, serum PSA, and finally study number 
2. The positive values of the coefficients for per-
formance and serum PSA indicate that the hazard 
increased with increased performance status and 
PSA, that is, survival time shortened. The negative 
coefficient for hemoglobin indicates that the haz-
ard was lower with higher values of serum hemo-
globin, and survival time lengthened. The negative 
coefficient for study number 2 indicates that after 
controlling for the effects of performance, serum 
PSA and serum hemoglobin, those on this study 
had a lower hazard and survived longer.

The effect of each variable on the hazard ratio 
is given in the column labeled exp(b), which pro-
vides the hazard ratios. For example, each 
increase in performance category raised the haz-
ard by a multiplicative factor of 1.64, and each 
unit increase in log(PSA) raised the hazard by a 
multiplicative factor of 1.1. By contrast, each 
unit increase in log(hemoglobin) decreased the 
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In a graphical nomogram, the value of HS 
 corresponds to the sum of the individual variable 
scores. The final survival probability then comes 
from whatever survival model and corresponding 
software is used to estimate both the baseline 
hazard as well as the hazard ratio.

For example, for men with hormone refrac-
tory prostate cancer, the following plot (Fig. 4.17) 
demonstrates how expected survival probability 
at 2 years and 5 years depends upon the HS. (The 
values of HS are less than zero, because the range 
of HS in the CALGB patients was from −3 to 
approximately 0.)
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Along with other physicians, pathologists have 
long been interested in how to forecast the future 
for patients with a variety of diseases. Common 
questions for anyone having an illness are the 
following:
 1. How will this problem affect my life and how 

long will I live after today?
 2. Which treatments could I receive for this 

problem?
 3. What is the likelihood that therapy will be 

effective, and at what cost?
Such queries are particularly pointed for peo-

ple with malignant neoplasms, or for clearly life-
threatening non-neoplastic illnesses such as 
Wegener granulomatosis, usual interstitial pneu-
monitis, scleroderma, and others.

Intuitively, physicians learned long ago that 
marked anatomic or physiological deviations 
from the norm likely indicated a problem of 
unusual severity, and, therefore, a more guarded 
outlook for the patient. During the early part of 
the twentieth century, this awareness led doctors 

to develop schemes for the semiquantitation of 
adverse risk. Histological grading of malignant 
tumors was devised, as a reflection of progres-
sively increasing visual differences from the 
images of corresponding normal tissues [3–12]. 
The higher the grade of a neoplasm, the less it 
was felt to resemble its non-neoplastic counter-
part under the microscope.

The scope of tumor growth was also codified 
in tumor staging systems. Even before the current 
“primary tumor-lymph node-distant metastasis” 
(TNM) system for tumor staging was proposed in 
the mid-1940s [13], other effective paradigms 
were devised in reference to specific malignan-
cies. For example, Dr. Cuthbert Dukes published 
an effective surgical staging system for colorectal 
adenocarcinoma in 1932 [14]. Once again, the 
underlying principle attached to increasing tumor 
stages is a progressive departure from the normal 
state. In other words, the farther a neoplasm 
grows from its anatomical origin, the more 
aggressive its behavior is felt to be.

As the natural history of malignant tumors 
was better understood using such tools, efforts 
at biological interdiction became more focused. 
For example, because axillary lymph nodes 
were often involved by metastatic carcinomas 
of the breast, pro forma removal of the nodes 
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was incorporated into surgical treatment for 
 mammary cancer [15]. After intraosseous “skip” 
lesions of bone sarcomas were characterized, 
limb amputation was employed more freely in 
the days before effective drug treatments were 
available [16]. The recognition that leukemia 
could use the central nervous system as a 
“haven” to escape the effects of chemotherapy 
prompted systematic irradiation of the neuraxis 
and the use of “Ommaya reservoirs” for drug 
delivery as prophylaxes against that phenome-
non [17, 18]. The use of such preemptive mea-
sures in treating human malignancies continues 
to this day.

One can rightly conclude that two major goals 
exist for medical prognostication and prediction. 
One is forecasting the future for individual 
patients, and the other is choosing the most effec-
tive treatments for the types, grades, and stages of 
the illnesses they have. Pathologists have become 
important providers of measurable and seemingly 
objective “prognostic” information on diseases 
of all kinds, but with a particular focus on malig-
nant neoplasms. This role is quite different than 
the one played by most laboratory-based physi-
cians until the 1980s. Although pathological 
observations did play a definite role in medical 
forecasting in the past, as discussed above, the 
principal task of pathologists was the attainment 
of diagnostic certitude. Once they had recognized 
and properly classified an illness, the subsequent 
role of prognosticator was largely situated in the 
bailiwick of clinical physicians.

Roughly 30 years ago, the advent of diagnostic 
immunohistology altered that scenario drastically 
[19]. The latter technique allowed pathologists to 
“map” the protein chemistry of tissues and tumors 
in a theretofore-unparalleled fashion, quickly and 
reproducibly. For the first time, biological mole-
cules with possibly determinative functions could 
be detected in situ in clinical specimens without 
the need for laborious and special tissue process-
ing. A tidal wave of medical publications on 
“pathological prognostic factors” began in the late 
1980s [20, 21] and has yet to abate.

To those who are naïve regarding the practice 
of laboratory medicine, it would seem that pathol-
ogists and oncologists have now reached the state 
of Hindu Moksha. Surely, neoplastic cells no longer 

can hold secrets unto themselves in the face of 
immunohistochemistry, in situ nucleic-acid hybri-
dization, proteomics, and gene-sequencing. 
Nonetheless, in a real sense, that assumption is 
incorrect. Several obstacles continue to encumber 
the task of pathobiological prognostication, and 
this chapter aims to discuss them. We will review 
the definitions and basic concepts of risk, prognosis 
and prediction, and consider the important role of 
pathologists as assessors of “new” tests using 
current information about mammary carcinoma 
as an example.

Risk, Prognosis and Prediction

The terms risk, prognosis and prediction have 
been inconsistently and ambiguously used in the 
medical literature as indicators of the likely 
course of a disease and/or response to a particular 
treatment. The term risk is derived from a Greek 
word rizikon, literally meaning root but later on 
used in Latin for “cliff ” [22]. It describes the 
deviation of one or more future events from their 
expected course, and usually focuses on the harm 
that may arise from such events. The term risk 
has been used in various disciplines, as health 
risk, economic risk, psychological risk, and oth-
ers. It has been used variably as the probability of 
certain negative events or hazards or to describe 
future issues that should be avoided or mitigated. 
In Medicine and Epidemiology, risk is usually 
estimated simply as the probability of an event, 
based on past experience. In business and engi-
neering, more complex mathematical risk models 
have been proposed, using functions that inte-
grate the probability of a threat, the probability of 
various other vulnerabilities, and their potential 
impact to a business or product [23]. Risk has 
been distinguished semantically from uncertainty, 
the lack of complete certainty, resulting from the 
possibility of various possible outcomes for an 
event or situation [24]. Uncertainty is usually 
measured as sets of probabilities of the various 
possible events or outcomes. The term risk has 
been generally used in pathology to describe the 
probability that patients with certain findings will 
develop a future malignancy in an attempt to 
develop strategies that will prevent the development 
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of cancer or lead to its early detection [25]. For 
example, patients with atypical adenomatous 
hyperplasia (ADH) and other conditions of the 
breast have a higher risk of developing breast 
cancer and are followed more carefully with 
mammography than patients without these find-
ings, in efforts at detecting early breast cancer 
[26]. The term risk has also been used in a differ-
ent context to describe the probability of detect-
ing a malignancy in a subsequent specimen [27]. 
For example, various “risks” of finding a malig-
nancy in a thyroidectomy specimen have been 
described for various findings detectable on fine 
needle aspirate specimens of the thyroid [28].

The term prognosis is also derived from a 
Greek work describing foreknowing or foresee-
ing and is used in Medicine to describe the likely 
outcome of a patient with a particular disease 
[29]. Prognostic estimates are usually calculated 
as percentages or other proportions and are gen-
erally variably accurate when applied to large 
populations of patients with a disease. Physicians 
since the time of Hippocrates have been inter-
ested in understanding the prognosis of various 
illnesses and have devised various prognostic 
models based on astrology or other theories [30]. 
For example, medieval physicians would use 
numerology to calculate a prognosis, using the 
Sphere of Petorisis, a circular chart designed by 
one of the founders of astrology, while modern 
medical informaticians currently propose the use 
of prognostic models based on data mining, mul-
tivariate numerical data, and various classifica-
tion models based on decision trees, decision 
rules, logistic regression, artificial neural net-
works, and other computational models derived 
from probability theory [31, 32]. It is beyond the 
scope of this chapter to discuss the concept of 
prognosis and various methodologies used for its 
estimation in further detail, but it is important to 
consider that prognostic estimates are not static 
for a particular disease. For example, the progno-
sis of a patient with mammary carcinoma is 
dependent on the age of the individual, presence 
or absence of other medical conditions, time of 
diagnosis during the natural history of the dis-
ease, treatment effectiveness, and many other 
known and unknown variables [33]. It is also 
important to consider that prognostic estimates 

have been usually calculated for populations of 
patients with a particular disease. An individual 
patient may have a prognosis that varies consid-
erably from the mean or median estimates for a 
population of individuals with the same disease.

The term prediction is based on Latin pre or 
before and dicere or say [34]. A prediction or 
forecast is used to estimate future events, usually 
but not always based on experience or knowl-
edge. Predictions can be rendered as statements 
regarding the outcome that is expected, a proba-
bility of the occurrence of the expected event or 
as forecasts describing a range of possible events 
[35]. In Medicine, prediction has been used in the 
context of estimating the efficacy of specific ther-
apeutic interventions [36]. However, the influ-
ence of various other variables that can affect the 
prognosis of a disease is frequently not consid-
ered as covariates in the forecasting models. 
Moreover, most predictive information in pathol-
ogy is currently available for populations of 
patients with particular disease and treated with 
specific therapeutic agents. No generally used 
predictive models have been devised for estimat-
ing the future course of diseases after treatment 
in individual patients, a limitation that is impor-
tant to consider in the era of “personalized medi-
cine” [37]. As famously stated by Niels Bohr, 
“prediction is difficult, especially if it is about the 
future” [38].

Personalized Medicine: Current 
Environment for the Development 
of Prognostic and Predictive 
Laboratory Tests

Advances in molecular medicine and our under-
standing of the human genome have opened a 
new paradigm in Medicine, where new therapies 
will be developed based on the understanding of 
the molecular basis of neoplasms and other dis-
eases and the treatment of patients will be indi-
vidualized [39]. There is great hope and hype 
about the great potential of Personalized Medicine 
[40]. This paradigm is based on the availability of 
sensitive, specific and accurate prognostic and 
predictive laboratory tests, and of new effective drugs. 
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In a perfect world, one would be able to evaluate 
each prospective prognostic or predictive medi-
cal test (PPMT) on a large-scale, in a measured 
way, and with the use of proper statistical guide-
lines. Unfortunately, that ideal may never be real-
ized. Pragmatic influences that hinder the process 
of medical research and development are basi-
cally threefold – financial factors, political imper-
atives, and test reproducibility and applicability 
to “routine” clinical specimens.

In order to understand the role of financial and 
political factors on PPMT development, one must 
look outside the realm of medicine and science to 
the fields of business administration and sociology. 
Projections for the cost of health care in the 
United States in the next 15 years are sobering 
[41]. Healthcare spending (HCS) already approx-
imates 20% of the gross domestic product (GDP), 
and, if the system is unchanged, it will steadily 
climb ever-higher (Fig. 5.1). Because a sizable 
fraction of U.S. citizens comprises “baby boomers” 
in the 50-and-older age range, who are increas-
ingly becoming eligible for Medicare health 
coverage, federal HCS could soon exceed 10% of 
the GDP. Most private health insurers have 
adopted practices that parallel those of Medicare. 
Thus, patients in their HCS plans  confront the 
same patterns of medical practice and billing as 

the U.S. government does, albeit with a different, 
more capitalistic, business model. James Traficant, 
a business executive who underwent two liver 
transplants, has written the following about 
the cost of modern U.S. health care [42], using a 
currently popular television medical drama as a 
reference:

Each week, a team of five doctors works around 
the clock and orders countless long-shot tests to 
diagnose a single patient suffering from an incred-
ibly rare condition. That the American healthcare 
system doesn’t [really] work this way isn’t the 
issue. It’s that everyone believes it should, when 
they’re the ones in the hospital gowns.

Returning to the issue of PPMTs, patients with 
malignancies are the ones in the hospital gowns, 
and, being human, they want ever-more and bet-
ter information about their personal medical out-
looks. They also have a natural tendency to 
believe that any new treatment which is tied to a 
“cutting-edge” PPMT is the one they should get.

Technological medical entrepreneurs are 
 all-too-ready to respond to this philosophical 
atmosphere. Some companies may exert not-so-
subtle pressure on physicians who are testing 
their new products – both PPMTs and associated 
therapies – to give them “positive” information 
that can be used in successful marketing and sales 

Fig. 5.1 Bar graph 
demonstrating relative 
international healthcare 
expenditures in 2006, as 
fractions of the gross 
domestic product. (From 
The World Health Report 
2006 – Working together 
for health, http://www.
who.int/whr/2006/en/, with 
permission from the World 
Health Organization)



655 Prognostication and Prediction in Anatomic Pathology

campaigns. Such partnerships are scientifically 
unsound and also may be unethical. One can eas-
ily envision a situation in which a large, well-
funded, well-connected medical development 
firm could effectively sell a marginally functional 
test or treatment, whereas a much smaller corpo-
ration could not so succeed, even if it had a clearly 
superior product.

Federal politicians are caught in a three-way 
vise between their constituents’ demands for 
comprehensive health care, including few if any 
limits; the interests of local businesses in the 
regions they represent; and the exigencies of 
maintaining a balanced national budget for the 
general welfare of the country. Interestingly, the 
effects of lobby-pressure on this tri-cornered tee-
ter-totter are not often mentioned. Over time, for 
example, the sub rosa financial influence of U.S. 
tobacco companies undeniably impeded medical 
advances in the control of smoking-related can-
cers, particularly lung carcinomas [43]. Now, 
many years later, American politicians must find 
the monetary support to treat the malignancies 
(and other disorders) that are related directly to 
their prior decisions. This situation includes the 
development of associated PPMTs.

What are the conclusions that one can draw 
from this information? First, the burden of overall 
health care will almost certainly curb the extrava-
gant use of medical testing that is not cost-effective. 
Second, patients will have to undergo a “religious 
conversion” regarding their presumed entitlement 
to unlimited medical services. Third, politicians – 
and medical care-providers – will need to look past 
their fiduciary and personal interests to establish a 
truly evidence-based and effective system of health 
care for their patients and constituents. They will 
need the concerted help of laboratory professionals 
and other scientists to do that task properly.

As the U.S. Congressional Budget Office has 
stated:

Two potentially complementary approaches to 
reducing spending on Medicare, Medicaid, and 
health care generally – rather than simply reallocat-
ing spending among different sectors of the 
 economy – involve generating more information 
about the relative effectiveness of medical 
 treatments [and testing, including PPMTs] and 
changing the incentives for providers and consumers  
in the supply and demand of health care … Medicare 

could tie its payment to providers to the cost of the 
most effective or most efficient treatment. If that 
payment was less than the cost of providing a more 
expensive service, then doctors and hospitals would 
probably elect not to provide it … Alternatively, 
enrollees could be required to pay for the additional 
costs of less effective procedures [41].

Out with the Old, in with the New?

In their excellent treatise on the vicissitudes of mod-
ern health care, entitled Hope or Hype: the Obse-
ssion with Medical Advances and the High Cost of 
False Promises, Deyo and Patrick address a com-
mon trait of both doctors and patients [44]. That is, 
both groups are extremely eager to dismiss “the 
old” in Medicine in favor of “the new.” The latter 
statement applies to any number of contextual top-
ics, such as the value of good physical diagnosis 
and history-taking, contrasted with data from reflex-
ive barrages of laboratory testing and radiological 
studies; the relative diagnostic benefits of plain-film 
radiographs as compared with magnetic resonance-
imaging or positron-emission tomography; support 
for a rational and humane use of hospice-care 
instead of heroic but pointless end-of-life medical 
intervention; and reliance on time-tested and proven 
PPMTs in pathology and laboratory medicine 
[45–47] as compared with wholesale dependence on 
genomics and proteomics [48, 49]. Medical advances 
have almost always been heralded initially as “break-
throughs,” despite accrual of subsequent infor-
mation – usually not shared with the public – that 
has debunked the efficacy of many of them [50].

Mammary Carcinoma as a Model  
to Discuss the Challenges of 
“Prognostication” and “Prediction”

In order to provide a tangible focus for discussion, 
we will use “usual” ductal adenocarcinoma (UDA) 
of the breast as a model to discuss the challenges 
associated with the development of various prog-
nostic and predictive laboratory tests and integrat-
ing the information developed by these tests into 
daily clinical practice. The information on breast 
carcinoma that will be presented is certainly not 
identical to that associated with colon cancer, 
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 prostate cancer, lung cancer, or other human 
 malignancies. Nevertheless, general  principles  are 
the same concerning the forecasting of outcomes 
for neoplastic diseases. 

 Breast cancer is the most common malignancy 
in American women, and the second-leading 
cause of death in that group. It has been predicted 
that in the year 2012, the annual prevalence of 
mammary carcinoma will be >950,000 cases in 
the U.S., and greater than four million cases 
worldwide. More than 210,000 new cases will 
accrue each year in this country, and >43,000 
women will die of the disease  [  51  ] . In the face of 
those daunting fi gures, efforts have been redou-
bled to improve “forecasting” of individual breast 
cancer cases, and to match therapies with indi-
vidual tumors in an optimal fashion. 

 In sorting through the statistics just listed, one 
must delve further to identify the most formida-
ble challenge to the process of prognostication 
for UDA. Among the 194,300 new instances of 
breast carcinoma in the U.S. in 2009, 70% 
(136,000) were classifi ed as UDAs pathologi-
cally, and 60% (81,600) of those patients had 
stage I tumors (localized to the breast) at diagno-
sis  [  52  ] . The latter subgroup is the crux of very 
pressing problems, the pertinent questions for 
which are –  how many new stage I breast cancers 
will resist therapy and threaten life, and how can 
they be identifi ed prospectively ? Based on histori-
cal data, the answer to the fi rst question would be 
approximately 24,500  [  51  ] . An accurate response 
to the second query is much more diffi cult to for-
mulate, as discussed subsequently. 

 For other UDAs that are stage  ³ II at presenta-
tion, the biological attributes of the tumor (a rela-
tively large size and/or metastatic involvement of 
regional lymph nodes) have already made it appar-
ent that such lesions have aggressive potential (i.e., 
a relatively poorer prognosis) and must be treated 
accordingly. In reference to that cohort of patients, 
the likely clinical outlook is not quite as uncertain – 
especially with no further treatment – but the pos-
sible individual benefi t of various  therapeutic 
interventions is still problematic. In that context, it 
must be understood that forecasting a biological 
response of a tumor to any given treatment type is 
properly termed  prediction , whereas foretelling 

the overall outcome of a case (life vs. death; short 
vs. long survival; low vs. high morbidity) is appro-
priately labeled as  prognostication . The two terms 
must not, and cannot, be interchanged, for breast 
cancer or any other malignant neoplasm. 

   Forecasting the Prognosis of Mammary 
Carcinoma Patients 

 There are several “old” evaluations of mammary 
carcinoma, which not only still have value but 
also match or even out-perform newer methods 
as forecasting tools  [  53–  57  ] . Moreover, these 
“old” procedures can be done by pathologists 
anywhere, with standard hematoxylin–eosin 
(H&E) stains and a microscope. 

   Effects of Tissue Sampling 
on Prognostication and Prediction 
 Before considering the specifi cs of prognostic and 
predictive factors for mammary carcinomas, one 
must attend to the issue of tissue sampling. In mod-
ern practice, a common modality for the surgical 
diagnosis of mass lesions uses cutting biopsy nee-
dles of variable diameters. These instruments com-
monly allow for a generic morphological diagnosis 
of malignancy to be made pathologically (Fig.  5.2 ), 

  Fig. 5.2    Needle-core biopsy specimen of invasive breast 
carcinoma. Samples such as this may contain signifi cant 
artifacts that impede prognostic and predictive studies       
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but there are real limitations to the use of needle 
biopsies for prognostic and predictive studies.

The latter statement is true because of two 
important factors [58–64]. The first is the distor-
tion of tissue that may be seen in small, “closed” 
biopsy specimens, such that important histologi-
cal details may be artifactually obscured. The 
second relates to the inherent spatial heterogene-
ity, which is a part of many human malignancies. 
In other words, if one samples several aspects of 
a tumor, several and conflicting data on prognosis 
may be obtained. Conversely, very limited sam-
pling can produce artificial results that in fact do 
not represent the biological lesion as a whole.

As a result of those realities, our opinion is that 
cutting-needle or fine-needle aspiration biopsies of 
breast masses are best used for diagnostic purposes 
only. If additional information is requested of the 
pathologist – concerning tumor type, grade, or 
expression of various biochemical markers – a 
caveat should be included in the surgical pathol-
ogy report on the possibly confounding  effects of 
limited sampling methods.

Recognition of “Special” Histologic Breast 
Cancer Variants
The first of the established methods for prognosti-
cation of breast carcinoma concerns the accurate 
morphological and conceptual identification of its 

“special” variants [65–73]. These differ  structurally 
and biologically from the most common form of 
mammary carcinoma, UDA, and these can be seg-
regated into three groups, which relate to the rela-
tive behavioral characteristics of the tumors in 
question. They are group I – more favorable behav-
ior than that of comparably sized UDA; group II – 
similar behavior to that of comparably sized UDA; 
and group III – more aggressive behavior than that 
of comparably sized UDA. These are segregated as 
follows, with the percentage fraction of all breast 
cancers they represent in parentheses:

Group I (Figs. 5.3–5.8) – “Pure” lobular carci-
noma (10–15%); “pure” mucinous carcinoma 
(2%); “pure” tubular carcinoma and low-grade 
invasive cribriform carcinoma (1–2%); salivary 
gland-type carcinomas of the breast (adenoid 
cystic carcinoma, acinic cell carcinoma, mucoepi-
dermoid carcinoma, low-grade adenosquamous 
carcinoma; malignant [adeno-]myoepithelioma) 
(1%); intracystic papillary carcinoma (1%); pri-
mary mammary “carcinoid” tumor (<1%); and 
“pure” medullary carcinoma (5%).

Group II (Figs. 5.9–5.11) – “Pure squamous cell 
 carcinoma” (<1%); secretory adenocarcinoma 
(<1%); “pleomorphic” lobular carcinoma (<1%); 
and “ atypical” or mixed medullary carcinoma 
(1–2%).

Fig. 5.3 (a) Fine-needle aspiration biopsy and (b) excisional biopsy specimen of “classical” invasive lobular carcinoma
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Group III (Figs. 5.12–5.15) – Metaplastic 
 carcinoma (sarcomatoid carcinoma; spindle-cell 
carcinoma; “carcinosarcoma”) (1%); neuro-
endocrine carcinoma (<1%); invasive micropap-
illary carcinoma (<1%); and undifferentiated 
carcinoma, not otherwise specified (<1%).

In current practice, the lamentable tendency of 
surgeons, radiotherapists, and medical oncolo-
gists is to adopt a “one size fits all” mentality in 
reference to breast carcinoma. In that approach, 
the histologically defined entities listed above are 
not distinguished conceptually from UDA. Studies 
for estrogen and progesterone receptor proteins, 
HER-2 gene amplification, and other biochemical 
and genetic analytes are demanded pro forma 
[74], despite the fact that morphological 

Fig. 5.6 Adenoid cystic carcinoma of the breast, compris-
ing tubules and nests of monotonous basaloid cells

Fig. 5.4 (a, b) “Pure” mucinous adenocarcinoma of the breast, showing aggregates of rather bland tumor cells 
 suspended in extracellular mucin

Fig. 5.5 (a, b) “Pure” tubular carcinoma of the breast, showing open tubular profiles that contain secretory “snouts”
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Fig. 5.7 (a) Gross and (b) microscopic photographs of intracystic papillary carcinoma of the breast. Numerous micro-
papillary structures, most of which lack fibrovascular cores, are present

Fig. 5.8 (a) Gross and (b) microscopic images of medullary breast carcinoma. The “cerebroid” nature of the macro-
scopic tumor is apparent, and its histologic image features a syncytium of neoplastic cells with admixed lymphocytes

 assignment alone clearly overrides the importance 
of those evaluations [65, 66].

In other words, histopathologic descriptors 
preceding the word “carcinoma” are regarded 
only with feeble interest and as having no practi-
cal significance. That attitude sets the stage for an 
uninformed and unscientific approach to man-
agement of the tumor types in question. In group I, 
all of the lesions (except, possibly, for medullary 
carcinoma) do not require anything more than 
local excision if they measure <3 cm. in maximal 
dimension [55]. The presence of larger masses 
should prompt a sentinel axillary lymph node 

biopsy, but, if it shows no metastasis,  nothing 
further needs be done. Lesions in group II can be 
managed surgically in the same fashion as that 
used for UDAs, stage-for-stage. However, in 
the former of those cohorts, it should be under-
stood that squamous cell carcinomas and med-
ullary carcinomas almost always fail to show 
immunoreactivity for estrogen or progesterone 
receptor proteins (ERP/PRP), or to manifest 
amplification of the HER-2 gene [65, 66]. 
Furthermore, they respond differently to con-
ventional chemotherapy, as compared with 
UDAs. Finally, metaplastic carcinomas, small-cell 
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 neuroendocrine carcinomas, invasive micropa-
pillary  carcinomas, and undifferentiated carcino-
mas of the breast in group III comprise a 
behaviorally aggressive subgroup and must be 
treated accordingly with a multimodal approach 
[71, 72, 75–82].

In summary, then, if one were to make no dis-
tinction between any of these pathologic-variant 
carcinomas and UDA, managing all breast can-
cers in the same fashion, the end result would be 
overtreatment (or, sometimes, undertreatment) of 
at least 10% of cases. That statistic may not seem 
critical, but it represents a sufficient number to 

falsely skew the results of a new treatment or a 
novel variation on an old one. With additional 
regard to the use of medical resources, automatic 
studies for ERP/PRP and HER-2 are unnecessary 
in reference to many special breast tumor types. 
Lobular, tubular, invasive cribriform, mucinous, 
and papillary carcinoma are essentially all capa-
ble of expressing hormone receptors, and they all 
lack HER-2 amplification [65, 66]. Medullary 
and metaplastic carcinomas consistently lack 
ERP/PRP, and, usually, HER-2 abnormalities as 
well [71, 83, 84].

Accurate Measurement of Tumor Size
Tumor size is, by itself, a meaningful prognostic 
factor [85–88], and there are two probable expla-
nations for that fact. The most likely one is that 
robust local growth of a primary malignancy 
indicates an overall dominance of tumor cell pro-
liferation over the host’s mechanisms for con-
taining it [53]. That same supremacy applies in 
metastatic sites as well. A second explanation 
regarding the significance of primary tumor size 
is that large masses of replicating, clonal, malig-
nant cells are prone to undergo additional muta-
tional events that may increase their growth 
potential, viability, and capacity for metastasis 
[88, 89].

The greatest dimension of any given invasive 
breast cancer has usually been measured from the 
gross specimen in the pathology laboratory. That 
is still the best method, although it must be 

Fig. 5.10 “Secretory” adenocarcinoma of the breast, as 
seen in a 12-year-old girl. A lacework of epithelial tumor 
cells encloses eosinophilic secretory material

Fig. 5.11 Metastatic “pleomorphic” lobular mammary car-
cinoma in an axillary lymph node. There is much more cel-
lular heterogeneity than that seen in the tumor in Fig. 5.3Fig. 5.9 Poorly differentiated “pure” squamous carci-

noma of the breast, with notable cytoplasmic  eosinophilia 
and individually dyskeratotic cells
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acknowledged that peritumoral desmoplasia may 
falsely increase the result somewhat. On the other 
hand, very small tumors (<0.5 cm) can be diffi-
cult to see well macroscopically, and their dimen-
sions must then be taken from microscopic slides 
or radiological images [87, 89].

Histologic Grading of Invasive Breast 
Carcinoma
As stated earlier, iterations of histological 
schemes for the grading of malignant tumors 
have been extant for almost 100 years, but some 
have been more useful than others. With regard to 

breast cancer – and, in particular, UDA – Bloom 
and Richardson introduced an effective grading 
system in 1957 [90]. It was subsequently modi-
fied slightly by Scarff and Torloni in 1968 [91], 
and again by Le Doussal et al. in 1989 [92], and 
continues to be used today on a worldwide scale. 
Details of the Bloom–Scarff–Richardson (BSR) 
grading method are shown in Table 5.1.

Many publications have attested to the inter-
observer reproducibility and prognostic value of 
the BSR grade, when used by itself and in combi-
nation with other clinicopathologic observations 
[93–99]. For example, the Nottingham Prognostic 

Fig. 5.12 (a) Gross and (b) microscopic images of “metaplastic” (sarcomatoid) breast carcinoma. The tumor is bulky 
macroscopically, and comprises fusiform and pleomorphic cells with no ductal structures

Fig. 5.13 (a, b) High-grade primary neuroendocrine carcinoma of the breast, showing dispersed nuclear chromatin, 
numerous mitotic figures, nuclear “molding,” and abundant apoptosis
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Index (NPI) melds the BSR grade with the tumor 
stage, as defined by the system put forth by the 
American Joint Committee on Cancer (AJCC) 
[95]. The latter includes factors reflecting pri-
mary tumor size, lymph nodal involvement, and 
distant metastasis. Relative weights have been 
assessed for individual components of the BSR 
grade and the AJCC stage, as in the modified BSR 
(MBSR) system of Le Doussal and coworkers 
[92]. From those analyses, it would appear that 
the degree of nuclear atypia-pleomorphism, 
mitotic rate per 10 high-power (×400) micro-
scopic fields, and metastatic involvement of 

regional lymph nodes are the principal contextual 
determinants of final case outcome.

The BSR and MBSR grading methods are best 
applied to UDAs, because the morphologic 
details of other nosological tumor types are so 
reproducible that they are also dispositive of 
grade. For example, tubular and invasive cribri-
form carcinomas are all grade I tumors, whereas 
medullary, neuroendocrine, and metaplastic 
 carcinomas are all grade III lesions [53].

Lymph Node Status as a Prognosticator 
for Breast Cancer
Dr. William S. Halsted, the first chief of surgery 
at Johns Hopkins University Hospital [100, 101], 
had a lasting influence on the way in which 
 physicians thought about breast cancer and its 
natural evolution. Up until 1882, the diagnosis of 
mammary carcinoma was usually a lethal one 
[102], and, owing to the lack of an effective treat-
ment for that tumor, many cases had been 
observed from their initial manifestations through 
advanced stages of growth. Halsted recognized 
that “scirrhous” (invasive) breast cancers had a 
reproducible tendency for involvement of the 
skin and chest wall, and for metastasis to regional 
(axillary, intramammary, and supraclavicular) 
lymph nodes. He postulated that if those tissues 
were removed early, tumors could be blocked 
from exercising their ability for “in-line” growth 
from the primary intramammary lesion [101].  

Fig. 5.15 Large-cell undifferentiated carcinoma of the 
breast, with “rhabdoid” features

Fig. 5.14 (a) Extensive intramammary lymphatic involvement is present in this invasive micropapillary breast carci-
noma. The tumor cells are variably pleomorphic (b); they form small tubules and micropapillae
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A logical extension of Halsted’s concepts held 
that embolic tumor implants in lymph nodes were 
“way-station” sources of additional, distant metas-
tases to deep structures such as the lungs, liver, 
brain, and bones. Hence, radical surgical excision 
of the breast, pectoralis muscles, and all acces-
sible regional nodes was undertaken from the 
early 1880s onward – the so-called “radical” mas-
tectomy or Halsted procedure. It was the therapy 
of choice for breast carcinoma through the late 
1970s [102].

Even today, many surgeons believe that 
aggressive axillary lymphadenectomy has a cura-
tive purpose, hypothetically preventing the vis-
ceralization of mammary cancers. Nonetheless, 
that line of reasoning is fallacious. Malignant 
neoplasms with the ability to metastasize at all 
will exercise that capacity globally as soon as 
they acquire it. Metastases may first be detected 
in regional lymph nodes, but distant implants are 
also concurrently present in viscera with the 
capability of growing to attain clinical visibility 
at some time in the future [103]. Strong evidence 

in favor of that mechanistic construct was 
 published in 1981 by Fisher et al. [104]. Those 
investigators randomized patients with clinically 
lymph-node-negative breast cancers to three 
groups. The first was treated with radical mastec-
tomy, whereas the second underwent total 
 mastectomy and thoraco-axillary irradiation, to 
“sterilize” any occult tumor deposits in axillary 
and internal mammary lymph nodes. The third 
group was managed with total mastectomy alone. 
Long-term surveillance showed no difference 
whatsoever in survival or rates of distant metasta-
sis among the three groups [104].

Using those data, Fisher and coworkers rightly 
concluded that tumor implants in regional lymph 
nodes were not the source of visceral metastases. 
Instead, they were … indicators of a host-tumor 
relationship which permits the development of 
metastases and…not important instigators of dis-
tant disease [104]. Put another way, regional 
lymph node metastases are merely tangible proof 
that any given breast cancer can successfully 
spread from the mammary gland and grow in a 

Table 5.1 Scarff–Bloom–Richardson grading scheme for invasive ductal breast carcinomaa

Tumor tubule formation Score
>75% of tumor cells arranged in tubules 1
>10% and <75% 2
<10% 3
Number of mitoses

Low power scanning (×100), find most mitotically tumor area, proceed to  
high power (×400)
<10 mitoses in 10 high-power fields 1
>10 and <20 mitoses 2
>20 mitoses per 10 high power fields 3
Nuclear pleomorphism

Cell nuclei are uniform in size and shape, relatively small, have dispersed  
chromatin patterns, and are without prominent nucleoli

1

Cell nuclei are somewhat pleomorphic, have nucleoli, and are intermediate size 2
Cell nuclei are relatively large, have prominent nucleoli or multiple nucleoli,  
coarse chromatin patterns, and vary in size and shape

3

Combined scoresb Differentiation/grade
3, 4, 5 Well-differentiated (grade I)
6, 7 Moderately differentiated (grade II)
8, 9 Poorly differentiated (grade III)
a The SBR grading scheme is based on three morphologic features: (1) degree of tumor tubule 
formation; (2) mitotic activity; and (3) degree of nuclear pleomorphism. Seven possible scores 
are condensed into three grades
b To obtain the final SBR score, one adds subscores from tubule formation, mitotic activity, and 
nuclear pleomorphism. The combined score yields the final grade
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secondary site. As such, in specific reference to 
UDAs, they are also markers for the presence of 
systemic disease [105].

Thus, it comes as no surprise that neoplastic 
implants in regional lymph nodes are, in fact, 
associated with a significant worsening of prog-
nosis. How much it is lessened depends on the 
number and locations of nodes that are involved 
[106–108] – indirectly indicating the vigor of 
tumor proliferation in anatomically “foreign” 
sites – as well as markers of growth potential 
(especially mitotic rate) in the neoplastic popula-
tion itself.

The latter comments have a direct bearing on a 
related topic – that is, the biological “meaning” of 
very few (Fig. 5.16) vs. very many tumor cells in 
a lymph node. Conflicting data have been recorded 
in reference to that subject [109]. However, our 
synthesis of them suggests that many other factors 
have a bearing on ultimate case outcomes besides 
tumor-cell-counting. Not all metastasizing neo-
plasms are the same behaviorally; some may have 
the capacity for angiolymphatic invasion and 
embolic spread to other sites, but they may lack 
the necessary metabolic machinery to thrive in 
those locations. A concrete example of that situa-
tion is illustrated by lymph node positivity in 
cases of “pure” tubular or invasive cribriform 

breast carcinoma, which empirically has been 
shown to have no association with a decrement in 
prognosis. Host immunity is also variable from 
case to case, but it represents another crucial part 
of the biological mix that determines whether 
metastatic cells can gain a foothold and flourish. 
In sum, we believe that “micrometastatic” tumor 
implants in lymph nodes (or viscera) reflect a lack 
of robustness in the neoplastic cell population in 
general, and we agree with recommendations that 
they be grouped with true “N0” lymph nodes for 
purposes of staging [110].

In light of these considerations, we cannot 
support the practice of reflexive immunohis-
tochemical staining or “molecular assessment” 
[111, 112] of regional nodes for epithelial mark-
ers, with the aim of finding histologically occult, 
dispersed tumor cells. Moreover, we see no thera-
peutic purpose – beyond, perhaps, a small step in 
benefitting the local control of tumor growth – in 
doing extensive “completion lymphadenecto-
mies” for UDAs with clearly positive axillary 
“sentinel” lymph node biopsies [113]. Those 
individuals have systemic disease, cannot be 
cured by the surgeon, and will all require adju-
vant treatments of some type. Therefore, the 
“sentinel” node technique is a generic prognostic 
tool, and, if the node is involved by a UDA of the 
breast, it should drive the decision to employ an 
appropriate nonsurgical therapy [114].

Is There a Surrogate for Formal Lymph 
Node Substaging of Breast Cancer?
Interest has grown in recent years over the 
 possibility that histological nuances of a primary 
breast carcinoma could obviate the need for 
 formal lymph node substaging. In particular, a 
logical focus has been drawn on the presence of 
intramammary angiolymphatic invasion by tumor 
cells, as seen in H&E sections [115–119] 
or in immunostained preparations with D2-40 
(Fig. 5.17), an antibody recognizing lymphatic 
endothelium [120–122]. In particular, de Mascarel 
et al. have shown that if lymphovascular tumor 
emboli (LTE) are seen in the breast, with an unin-
volved zone of normal tissue between the primary 
carcinoma and the emboli, the likelihood of 
metastasis-free survival is significantly lessened 

Fig. 5.16 Isolated tumor cells are seen in an axillary 
lymph node in a case of invasive ductal adenocarcinoma 
of the usual type, with this pankeratin immunostain. The 
prognostic significance of this finding is nil, and such 
nodes should be classified as “negative for tumor”
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[120]. Moreover, Gurleyik and coworkers and 
Klar et al. demonstrated a strong correlation 
between the presence of LTE and metastasis to 
regional lymph nodes [115]. These findings are 
not unexpected, because acquisition of the ability 
for tumor cells to cross vascular basement mem-
branes goes hand-in-hand with development of a 
metastasis-capable genotype and phenotype [123].

“New” Putatively Prognostic Analytes  
in Breast Carcinomas

In the wake of the worldwide “genome project” 
and the common use of comparative genomic 
hybridization, many candidate genes have been 
identified with possible behavioral importance 
for breast carcinomas. These include nm23, p53, 
c-myc, H-, K-, and N-ras, PS2, c-erbB-2(HER-2/
neu) and c-erbB-3 (HER-3), epidermal growth 
factor receptor-1, “heat shock” genes, int-2/hst/
bcl-1, RB1, and many others [48, 49, 124–136]. 
Mutations or amplifications of such moieties 
have been correlated with allegedly worsened 
behavior of mammary cancers. In addition, 
“molecular” markers of cell replication, such as 
Ki-67/MIB-1, proliferating cell nuclear antigen 
(PCNA), and the cyclin family of proteins, have 
been studied as substitutes for, or adjuncts to, 
morphologic quantitation of mitotic activity in 
breast carcinomas [137, 138].

Assertions have been made that such analytes 
should replace morphology-based observations 
in the prognostication of malignant tumors of the 
breast and other organs [135–156]. The follow-
ing sections address several problems, which are 
attached to those recommendations.

Heterogeneous Data Types Affecting 
Prognostic Factors
In any discipline, data exist in one of three basic 
forms. They are categorical (nominal), binary, or 
semiquantitative-quantitative [157]. An example 
of categorical data is represented by discrete, 
mutually exclusive, morphologically defined 
diseases or disease subsets, which must be inher-
ently uniform internally. That type of information 
has formed the backbone of investigations in 
anatomic pathology. A common form of binary 
data is the positive/negative reporting format 
that pertains to many medical tests, defined 
by the presence or absence of a predefined 
 analyte. Binary information has a tendency to be 
artificially delineated, because very few (if any) 
constituents of biological systems are either ubiq-
uitous or  undetectable in a mutually exclusive 
way. The semiquantitative-quantitative category 
is self-explanatory and best suited to measure-
ments in biology and Medicine. It is also the most 
 dependent of all data sets on methodological 
 precision, reproducibility, and accuracy.

Fig. 5.17 Angiolymphatic invasion by breast carcinoma, as seen with in a hematoxylin and eosin-stained slide (a) and 
an immunostain for podoplanin (b) done with antibody “D2-40”



76 M.R. Wick et al.

Case Example: Effects of Incorrect 
Categorical and Binary Data Generation
A 53-year-old woman detected a mass in her 
left axilla while bathing. It was confirmed on 
physical examination by her physician, and by 
computed tomography of the thorax (Fig. 5.18). 
Surgical excision and histological examination 
demonstrated a malignant, large-cell undiffer-
entiated neoplasm in an axillary lymph node 
(Fig. 5.19). The morphological differential 

diagnosis centered on metastatic carcinoma vs. 
metastatic melanoma. Accordingly, immunos-
tains were obtained for pankeratin and S100 
protein; these were interpreted as negative and 
positive, respectively (binary data generation), 
and a final diagnosis of metastatic melanoma 
was made (categorical data generation). 
Reexamination of the skin showed no evidence 
of a pigmented lesion, but it was thought to 
have regressed. The patient was referred to 
another institution for entry into a melanoma-
vaccine trial.

Pathologists at the second institution wished to 
perform additional immunohistologic studies, and 
they asked for the original paraffin blocks of 
tumor tissue. Immunostains for pankeratin and 
S100 protein were also repeated. This time, the 
tumor was found to be reactive for both keratin 
and S100 protein [158]; in addition, it lacked 
melan-A, tyrosinase, and PNL2, all of which are 
melanocytic markers [159]. Another stain for 
gross cystic disease fluid protein-15 (a breast 
epithelium-related analyte) [160] was positive 
(Fig. 5.20), establishing the diagnosis of meta-
static breast carcinoma. Mammography then 
disclosed a mass in the left breast, a fine needle 
aspiration biopsy of which showed adenocarci-
noma (Fig. 5.21). Subsequent discussion with the 
referring pathologists revealed that recommended 
epitope-retrieval methods were not used in 
doing pankeratin immunostains [161] at their 
institution, accounting for the false negativity  of 
that analyte.

Had the original pathological data been used 
in prognostication and treatment planning, sev-
eral derivative mistakes would have been made. 
Incorrect categorical information – which, in 
turn, was produced by incorrect binary data – 
would have put the patient in the wrong treatment 
“bin,” “contaminating” accrued results of mela-
noma vaccine therapy at institution no. 2 and 
excluding the possibility of effective breast can-
cer-directed intervention. Parenthically, predic-
tive markers for mammary cancers, including 
ERP/PRP and HER-2, also would not have been 
assessed. It is likewise probable that identifica-
tion of the primary mammary tumor would have 
been delayed or not made at all.

Fig. 5.18 Thoracic computed tomogram showing a large 
left axillary lymph node in a middle-aged woman

Fig. 5.19 Excision of the mass shown in the previous 
 figure demonstrated a large-cell undifferentiated malig-
nancy. The principal differential diagnosis was between 
carcinoma and melanoma
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The particular danger that is tied to binary data 
is that they often are used in a contingent fashion 
for treatment planning. In other words, a “posi-
tive” result leads in one direction, a “negative” in 
another. Hence, mistakes in generating binary data 
can be crucial ones. Returning to the illustrative 
case, the only practical way for pathology labora-
tories to quality-control immunohistologic results 
is to utilize a combination of internal duplicate-
testing and extramural validation by another refer-
ence laboratory [162–164] (see Chap. 16).

The situation is even more complicated if one 
attempts to substitute one binary test as a  surro- 
gate for another one, or to use a binary assay for 

 multivariate targets. For example, several studies 
have shown that immunohistological assessment 
of HER-2 gene amplification is an imperfect sub-
stitute for in-situ hybridization or polymerase 
chain reaction-based assays [165–177]. In other 
words, a “positive” HER-2 immunostain may be 
unassociated with actual gene amplification in a 
sizable proportion of breast cancer cases. Similar 
comments apply to the relationship between 
“positive” immunostains for epidermal growth 
factor receptor (EGFR) and actual mutations in 
the EGFR gene, in reference to lung or colon car-
cinomas. Yet another example of the same hiatus 
is “positive” immunostaining for CD117 (c-kit), 

Fig. 5.20 (a) S100 protein-staining of the lesion shown 
in Fig. 5.19 produced positive results, and a pankeratin 
stain (b) was interpreted as negative. The tumor was 
therefore classified as a melanoma. However, repeated 

keratin immunostaining with proper epitope retrieval showed 
obvious positivity (c). An additional study showed gross 
cystic disease fluid protein-15 in the tumor cells (d). The final 
diagnosis was that of metastatic mammary adenocarcinoma
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but with no actual activating mutation in the 
CD117 gene [178, 179].

The outcome of all of those scenarios is again 
a likely misdirection of treatment. Biological 
agents that are inhibitors of HER-2, EGFR, or 
CD117 may be administered on the basis of “pos-
itive” respective immunostains, but there will be 
no clinical response because the surrogate 
“binary” tests are poor ones.

As considered elsewhere in this monograph, 
statistical methods also differ significantly for the 
evaluation of binary and semiquantitative or 
quantitative data of prognostic or predictive use. 
Binary information is often assessed using 
Bayesian techniques; nonbinary data require 
evaluations using receiver-operator-characteristic 
(ROC) curves; likelihood ratios, Wilcoxon 
 analysis, Kruskal–Wallis testing, and other simi-
lar procedures [180].

Interpretative and decision-making applica-
tions of binary or categorical data can be facili-
tated by constructing partially redundant 
algorithms that are based on constellations of test 
results. An example is shown in Fig. 5.22, in 
reference to immunohistochemical identification 
of metastatic carcinomas of unknown origin. 
Nevertheless, such constructions cannot compen-
sate for poor methodology.

Methodological Reproducibility  
and Cross-Validation
Methodological reproducibility is, sadly, rarely 
discussed in the practice of anatomic pathology 
[162, 164]. As an example, one could obtain bio-
logically “proven,” analyte-positive cases to use 
as “in-run” controls. In the context of immunos-
tains in breast cancer cases, such specimens are 
exemplified by ERP-positive invasive carcinomas 
that are known to have responded clinically to 
hormonal therapy. Unfortunately, the latter por-
tion of that requirement is typically ignored.

Cross-validation of methods (CVM: also known 
as interanalytical agreement) is also a cornerstone 
of proper testing for prognostic and predictive fac-
tors. In the realm of breast cancer evaluation, 
examples of CVM are represented by parallel eval-
uations of ERP content by dextran-coated charcoal 
assays and immunostaining, done on the same tis-
sue specimens [181–183]; immunostaining for 
nuclear p53-reactivity (Fig. 5.23), compared with 
formal gene-sequence analysis to identify p53 
mutations, again on the same tissue samples  
[184–189] (Fig. 5.24); and HER-2 immunostaining 
compared with results of in-situ hybridization 
(ISH) using the same tissue substrate [168–177]. 
Again, the routine application of CVM is a sad 
 rarity in the practice of surgical pathology.

Fig. 5.21 Subsequent mammography of the left breast, in the case discussed in Figs. 5.19 and 5.20, showed a mass 
with the phenotype of carcinoma (a); that impression was confirmed by fine-needle aspiration biopsy (b)
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Case Example: Effects of Omitting  
Cross-Validation of Methods
A 39-year-old woman found a mass in her right 
breast by monthly self-examination. The lesion 
was confirmed mammographically, and its image 
suggested a malignancy. Excision and pathological 

examination of the mass showed an invasive 1 cm, 
UDA of BSR grade II (Fig. 5.25). It exhibited no 
angiolymphatic invasion and had a low mitotic 
rate; all surgical margins were uninvolved by tumor. 
It was immunoreactive for ERP and PRP, and 
lacked HER-2 amplification in ISH studies.

Fig. 5.22 Algorithm for the immunohistochemical identification of metastatic epithelioid malignancies. The inherent 
redundancy in this approach compensates, at least in part, for biological variation in this group of tumors

Fig. 5.23 Nuclear immunolabeling of ductal breast carci-
noma for putatively mutant p53 protein

Fig. 5.24 Southern blot preparation for mutant p53, dem-
onstrating a nonmutated patient sample as compared with 
“wild type” control tissues
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The surgeon handling the case specifically 
requested that an immunostain for p53 be done, 
predicated on his recent perusal of literature on 
that analyte in breast cancer. Without asking 
about the use the surgeon intended for that result, 
the test was done by the pathologist. Unexpectedly, 
it showed significant nuclear reactivity for p53 
(Fig. 5.26), which was reported in an addendum 
with no additional comments.

Based on that finding, the surgeon informed the 
patient that she had a poor-prognosis  neoplasm. 
He recommended, and performed, a modified rad-
ical completion mastectomy (which demonstrated 
no residual tumor or lymph node involvement) , 

followed by adjuvant chemotherapy. The patient 
had severe vomiting during her course of treatment 
and developed a local “seroma” at the surgical site, 
which gradually resolved.

By coincidence, it happened that frozen tissue 
from the original excision specimen had been 
saved in the institutional tumor bank. It was later 
analyzed, as part of a research study, for p53 
mutations by polymerase chain reaction-medi-
ated analysis of single-strand conformation poly-
morphisms and by direct sequencing. No p53 
mutations were found.

It is well known that “positive” nuclear label-
ing for putatively mutant p53 protein can be 
caused by several other mechanisms that do not 
involve gene mutation [184, 185, 188, 189]. In 
the absence of a real gene aberration, such results 
have no biological importance.

Thus, in this illustrative case, several mistakes 
derived from the failure to validate immunos-
taining results by more sophisticated methods. 
First, a conceptual failing by the surgeon – that is, 
using an isolated test result to determine therapy – 
undeniably occurred in the face of morphological 
and supplementary laboratory information that 
was prognostically favorable. That misstep produced 
unnecessarily aggressive treatment with unwanted 
morbidity. Second, a failure of the pathologist to 
explain the limitations of p53 immunostaining in 
the surgical pathology report indirectly fostered 
incorrect decisions by the surgeon. If it is done at 
all in UDA cases, p53 immunostaining should 
be viewed as a screening procedure; “positive” 
results must be validated by additional studies.

Sources of Clinical Bias in Reference  
to New “Prognostic” Markers
Some pathologists pay little attention to medical 
publications in other specialty areas, including 
those that discuss new “prognostic” markers for 
breast carcinoma and other malignant tumors. 
That is an unfortunate oversight. Pathologists 
must be able to discern whether or not such clini-
cal studies have been properly constructed and 
performed, in order to help their colleagues 
decide which new “prognostic” laboratory assays 
are worthy of implementation and which are not.

Reproducible mistakes exist in a substantial 
number of “forecast”-oriented clinical publications  

Fig. 5.25 Bloom–Scarff–Richardson grade II ductal ade-
nocarcinoma, as seen in a 39-year-old woman

Fig. 5.26 The tumor in Fig. 5.25 unexpectedly immuno-
labeled for p53 protein, but no actual p53 mutations were 
found on subsequent blotting studies
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in oncology. The first is the inclusion of tumors of 
different histologic types, grades, and stages in the 
same cohort of cases. The second is the indiscrimi-
nate mixing of patients who have never before 
been treated for their malignancies, with others 
who have failed prior therapies, in the same study 
group. The third is represented by attempts to 
compare the outcomes of patients who have 
received a heterogeneous hodgepodge of treat-
ments, but with focus on a single “prognostic” fac-
tor. Finally, there may be inattention to important 
and variable comorbid conditions in the study pop-
ulation. Any one of these flaws casts serious doubt 
on the validity of conclusions regarding “progno-
sis.” Another problem concerns a failure to use 
“power analysis;” that is, predefined statistical 
construction of studies with sufficient case num-
bers and controls to yield valid information [190]. 
Those measures are necessary because “large 
groups” of study cases may, in fact, be inadequate 
to allow for definite conclusions about them.  
A study set of 50 prostatic leiomyosarcomas would 
seem huge to any given surgical pathologist 
because of the rarity of that tumor type, but, in 
fact, it would not allow for any truly meaningful 
studies on the prognosis of the lesion.

An additional pertinent issue is the definition of 
“outcomes.” They may be binary (e.g., dead or 
alive; tumor-free or not), or qualified (overall sur-
vival vs. disease-free survival). These definitions 
have distinct implications for the estimation of 
prognosis. Some analytes may be prognostic in 
regard to one outcome measure, but not another. 
For example, factor “X” may correlate well with 
disease-free survival but not overall survival. 
Others may be prognostic for one patient sub-
group, but not others (e.g., individuals with stage I 
breast cancers vs. those with nonstage I tumors).

Two truisms attach to these issues. First, in 
any proper comparison of 2 or more prognostic 
factors that are derived from different patient-
cohorts, the cohort compositions and measures 
of “outcome” must be the same. Second, it must 
be understood that “surrogate” measures of 
 outcome are not the same as “real” outcomes. 
Statements about surrogacy go as follows … fac-
tor “Z” forecasts well for lymph node metastasis, 
and lymph node metastasis correlates well with 
overall prognosis, so therefore factor “Z” also 

forecasts overall prognosis. That form of logical 
construction often falls into the “true-true-unrelated” 
category and is therefore incorrect. Regrettably, 
surrogate outcome measures have become very 
common in the literature on anatomic pathology, 
because of modern difficulties in obtaining infor-
mation from long-term surveillance of patients. 
Those problems stem from bureaucratic obstacles 
to follow up – principally derived from the U.S. 
Health Insurance Portability and Accountability 
Act of 1996 [191] – and also the fact that patients 
only uncommonly receive continuous care at any 
one medical center.

The McGuire Criteria: Template  
for Evaluation of “Prognostic” Tests

Dr. William L. McGuire was a professor and the 
division chief of Medical Oncology at the 
University of Texas-San Antonio for many years 
before his untimely death in 1992, and an inter-
nationally renowned researcher on breast cancer 
[192]. In the latter part of his career, Dr. McGuire 
wrote a landmark editorial on prognostic and pre-
dictive factors in oncology, as applied to breast 
carcinoma or any other malignant neoplasm 
[193]. That document described several charac-
teristics of any effective test for clinical forecast-
ing, which have since become known as the 
McGuire criteria (MC) (Fig. 5.27). They not only 
address the major laboratory problems that can 

Fig. 5.27 The McGuire criteria for evaluation of proposed 
prognostic and predictive tests in anatomic pathology and 
oncology
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Fig. 5.29 The McGuire 
criteria, applied to HER-2 
protein as detected 
immunohistologically

Fig. 5.28 The McGuire 
criteria, applied to estrogen 
receptor and progesterone 
receptor proteins as detected 
immunohistologically

be associated with tests for “forecasting” factors, 
but also require that proof of a true biological 
effect on tumor growth be supplied for each new 
marker. The final criterion centers on performing 
“definitive” clinical studies of prognostic and 
predictive markers. That stipulation touches on 
the problems with study-group composition and 
statistical analysis that were mentioned above.

In applying the MC to currently utilized 
PPMTs, where do we stand? Summaries are 
given for exemplary markers in Figs. 5.28–5.31. 

In examining the details, the reader will note that 
each of several common breast carcinoma-related 
markers – including ERP/PRP, p53, HER-2, and 
Ki-67 – still is plagued by clinicopathologic 
shortcomings vis-à-vis the MC.

HER-2 and Herceptin: An Historical 
Review
In 1987, Slamon and colleagues discovered a 
possible therapeutic target in some breast carci-
nomas [194]. Those tumors overexpressed the 
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Fig. 5.30 The McGuire 
criteria, applied to mutant 
p53 protein as detected 
immunohistologically

Fig. 5.31 The McGuire 
criteria, applied to Ki-67  
(a proliferation marker) as 
detected immunohistologically

HER-2 gene, which codes for one of the epidermal 
growth factor receptors (c-erbB-2) with tyrosine 
kinase activity. Amplification of the HER-2 
gene and corresponding overexpression of the 
receptor protein were found to cause aberrant 
intracellular signaling and increased cell divi-
sion; that abnormality was present in 20–30% of 
stage I UDAs.

Trastuzumab (Herceptin ©) is a humanized 
monoclonal antibody, developed by Genentech 
Co., which binds to the [195] extracellular seg-
ment of HER-2 receptor, blocking its coupling 
with extracellular mitogens (Fig. 5.32). The result 

is growth arrest in the G1 phase of the cell cycle. 
Trastuzumab may suppress angiogenesis as well 
through unrelated mechanisms, and it may serve 
as the target for antibody-dependent cellular 
cytotoxicity by the host [137].

If it is determined that a breast cancer shows 
c-erbB2 amplification (HER-2+ status; see 
below), the patient is eligible for treatment with 
trastuzumab. Nevertheless, the actual rates of 
success with that agent are troubling; 70% of 
HER-2+ patients fail to respond, and resistance to 
trastuzumab is developed rapidly in virtually all 
cases that do show an initial benefit [196].
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Herceptin has been touted as having a “major 
impact in the treatment of HER2-positive meta-
static breast cancer” [197]. In addition, the com-
bination of trastuzumab with conventional 
chemotherapeutic agents has been said to increase 
survival and response rate, in comparison to the 
use of Herceptin alone [198]. Some clinical trials 
have concluded that Herceptin reduced the risk of 
relapse by 50% when given in the adjuvant set-
ting for 1 year [199, 200]. Nonetheless, the actual 
case numbers are more sobering. In one study in 
England, 9.4% of Herceptin-treated breast can-
cers relapsed compared with 17.2% of those who 
were not given trastuzumab. Moreover, almost 
85% of the patients would not have developed a 
recurrence whether or not they received trastu-
zumab, and roughly 10% relapsed despite getting 
the drug. Only 8% of cases showed a durable 
response to Herceptin [201].

The actual benefits of Herceptin are also not 
very impressive when viewed in terms of all-
cause mortality. Large studies have shown that 
one must treat between 25 and 100 patients with 
breast cancer to prevent a single death during a 
follow-up period of 4 years [202, 203]. For each 
patient who benefits, 10–25 will develop 
Herceptin-mediated cardiomyopathy, and some 
of those individuals will die from congestive 
heart failure. Finally, it is worth taking special 
note that the average cost to the healthcare sys-
tem of 1 years’ treatment with trastuzumab is 
approximately $100,000 per patient [204–207].

Additional problems come to light when one 
considers the laboratory methods that have been 

used to define HER-2 amplification [165–177]. 
Early on, it was realized that the humanized 
monoclonal antibody, trastuzumab, did not func-
tion well as a diagnostic reagent in immunohis-
tochemical studies. Therefore, alternatively, 
heteroantisera to HER-2 were utilized in an 
immunohistologic assay that was marketed as the 
“Herceptest ©.” That evaluation is an indirect 
indicator of HER-2 gene amplification, which is 
putatively manifest by causing a large amount of 
HER-2-related protein to accumulate in the mem-
branes of tumor cells (Fig. 5.33). Problems that 
have been encountered with the Herceptest 
include fixation-related variation in sensitivity, 
suboptimal reproducibility between laboratories, 
a subjective threshold for interpreting the test as 
“positive,” and imperfect correlation with ISH 
studies as a true marker of gene amplification 
[208–214]. As this chapter is being written in 
mid-2011 – 13 years after the introduction of 
Herceptin – position papers are still being pub-
lished on the “optimal” way of detecting HER-2 
amplification in the laboratory [215–219].

Hence, we come to a denouement regarding 
the use of HER-2 as a PPMT, and Herceptin, one 
of the most championed single treatments of all 
time. In the final analysis, HER-2 gene amplifica-
tion in breast carcinomas – which we believe is 

Fig. 5.33 Immunohistologic staining for HER-2 protein 
is predicated on the premise that HER-2 gene amplifica-
tion in breast carcinoma will produce an excess of the cell 
membrane-bound protein target

Fig. 5.32 Illustrative diagram depicting how the therapeutic 
biological agent, trastuzumab (Herceptin ©), is intended to 
block mitogens (growth factors) that bind to the HER-2 
receptor
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best detected using ISH (Fig. 5.34), not the 
Herceptest – is treated with an agent that is very 
expensive, with long-term effectiveness in no 
more than 10% of cases and potentially lethal 
cardiotoxicity [51, 220–226]. Elkin et al. [227] 
have concluded that the healthcare system “gets a 
good deal” by supporting reflexive testing for 
HER-2 amplification in all breast cancers. If that 
is done by ISH, with an average cost of $350 per 
assay, $73,500,000 would be expended yearly in 
testing the 195,000 new cases of mammary carci-
noma in the U.S. [227]. Herceptin-related expen-
ditures for the 25% of new UDAs that are 
HER-2+, with 1 full year of treatment, add 
$3,400,000,000 to the tally for an annual total of 
$3,473,500,000. With due respect, we are led to 
disagree with Elkin and coworkers regarding 
their opinions on this topic.

Conclusions

Despite strong assertions to the contrary – both in 
the lay press and in medical publications [204–
207] – the current status of “new” PPMTs for 
human malignancies is a chaotic one with dubi-
ous cost-effectiveness. A lack of uniformity 
exists in how those tests are performed and inter-
preted, and their “meaning” is often obscured by 
poorly constructed and administrated clinical 

 trials. This averral is not unique to the authors; 
indeed, the College of American Pathologists has 
convened two multidisciplinary meetings on the 
topic of PPMTs, with comparable conclusions to 
ours [228]. On the other hand, “old” PPMTs, 
when properly performed, are still extremely 
valuable and trustworthy with regard to clinical 
forecasting [53, 115]. In specific reference to 
breast carcinoma, these have been enumerated 
earlier in our discussion, including factors such 
as recognition of “special” histologic variants, 
accurate measurement of tumor size, BSR grade, 
mitotic rate, lymph node substage, and the pres-
ence of angiolymphatic invasion.

As laboratory methods are refined, and as 
novel, potentially highly effective biological treat-
ments become available and are tailored to spe-
cific neoplasms (e.g., imatinib for gastrointestinal 
stromal tumors and chronic myelogenous leuke-
mia [1, 2], this situation may well change). At the 
present time, however, pathologists must be sys-
tematic and critical in their assessments of new 
PPMTs, with a strict threshold for acceptance of 
those methods as “state-of-the-art” procedures. 
As explained in different chapters of this volume, 
the evidence-based process starts by formulating 
patient-related questions, such as: What are we 
trying to achieve with the new laboratory test? 
What are the specific indications of this new test, 
based on previous knowledge about a particular 
disease? Are the findings obtained with the new 
test going to be used by clinicians to select the 
treatment of a patient? Is the therapeutic interven-
tion indicated by the information provided by the 
tests going to significantly affect the outcome of a 
disease, in terms of survival, quality of life, or 
other indicators? Are there other less expensive 
tests that could provide similar information? 
Application of “evidence-based” principles will 
be a crucial part of the process of realizing the full 
potential of the personalized medicine paradigm 
in a manner that optimizes the clinical applicabil-
ity of all relevant available information, and dis-
courages the use of laboratory tests and other 
diagnostic procedures that often add only incon-
venience, morbidity, false hopes, confusion, and/
or unnecessary cost to the treatment of patients 
with breast cancer and other diseases.

Fig. 5.34 Fluorescent in-situ hybridization preparation 
of ductal breast carcinoma, demonstrating several copies 
of the HER-2 gene in each tumor cells and confirming the 
presence of gene amplification



86 M.R. Wick et al.

References

 1. Waller CF. Imatinib mesylate. Recent Results Cancer 
Res. 2010;184:3–20.

 2. Arifi S, El-Sayadi H, Dufresne A, et al. Imatinib and 
solid tumors. Bull Cancer. 2008;95:99–106.

 3. Broders AC. Squamous cell epithelioma of the lip: a 
study of 537 cases. JAMA. 1920;74:656–64.

 4. Edmundson WF. Microscopic grading of cancer and 
its practical implications. Arch Dermatol Syphilol. 
1948;57:141–50.

 5. Eker R, Weyde R. The significance of histological 
grading in the prognosis of carcinomas in the true oral 
cavity. Acta Pathol Microbiol Scand. 1949;26: 
750–68.

 6. Ringertz N. Grading of gliomas. Acta Pathol Microbiol 
Scand. 1950;27:51–64.

 7. Goyanna R, Torres ET, Broders AC. Histological 
grading of malignant tumors; Broders’ method. 
Hospital (Rio J). 1951;39:791–818.

 8. Fahmy A. Histological grading of urinary bladder 
tumors: a study of 411 urinary bladder biopsies. Urol 
Int. 1963;15:358–77.

 9. Pugh RC. The grading and staging of bladder tumors: 
the Institute of Urology classification. Br J Urol. 
1957;29:222–5.

 10. Graham JB. Histologic grading of cancer of the uter-
ine cervix. Surg Gynecol Obstet. 1953;96:331–7.

 11. Price CH. The grading of osteogenic sarcoma. Br  
J Cancer. 1952;6:46–68.

 12. Broders AC, Hargrave R, Meyerding HW. Pathological 
features of soft tissue fibrosarcoma with special refer-
ence to the grading of its malignancy. Surg Gynecol 
Obstet. 1939;69:267–80.

 13. Denoix PF. Enquate permanent dans les centres anti-
cancereaux. Bull Inst Nat Hyg. 1946;1:70–5.

 14. Dukes CE. The classification of cancer of the rectum. 
J Pathol Bacteriol. 1932;35:323–40.

 15. Mathews FS. The ten-year survivors of radical mas-
tectomy. Ann Surg. 1933;98:635–43.

 16. Enneking WF, Kagan A. The implications of “skip” 
metastases in osteosarcoma. Clin Orthop Relat Res. 
1975;111:33–41.

 17. Kim TH, Nesbit ME, D’Angio GD, Levitt SH. The 
role of central nervous system irradiation in children 
with acute lymphoblastic leukemia. Radiology. 1972; 
104:635–41.

 18. Spiers AS, Booth AE, Firth JL. Subcutaneous cere-
brospinal fluid reservoirs in patients with acute leuke-
mia. Scand J Haematol. 1978;20:289–96.

 19. Taylor CR. Immunoperoxidase techniques: practical 
and theoretical aspects. Arch Pathol Lab Med. 1978; 
102:113–21.

 20. Mori M, Ambe K, Adachi Y, et al. Prognostic value of 
immunohistochemically-identified CEA, SC, AFP, 
and S100 protein positive-cells in gastric carcinoma. 
Cancer. 1988;62:534–40.

 21. Kluftinger AM, Robinson BW, Quenville NF, Finley 
RJ, Davis NL. Correlation of epidermal growth  factor 

receptor and c-erbB-2 oncogene product to known 
prognostic indicators of colorectal cancer. Surg Oncol. 
1992;1:97–105.

 22. Rescher N. A philosophical introduction to the theory 
of risk evaluation and measurement. Washington: 
University Press of America; 1983.

 23. Hubbard D. The failure of risk management: why it’s 
broken and how to fix it. Baltimore: John Hopkins; 
2009.

 24. Risk and uncertainty. http://en.wikipedia.org/wiki/
Risk.

 25. Wolf DC, Mann PC. Confounders in interpreting 
pathology for safety and risk assessment. Toxicol 
Appl Pharmacol. 2005;202:302–8.

 26. Carter BA, Page DL, O’Malley FP. Usual epithelial 
hyperplasia and atypical ductal hyperplasia. In: 
O’Malley FP, Pinder SE, editors. Foundations in diag-
nostic pathology – breast pathology. Churchill 
Livingstone: Elsevier; 2006. p. 164–8.

 27. Marchevsky AM, Walts AE, Bose S, et al. Evidence-
based evaluation of the risks of malignancy predicted 
by thyroid fine-needle aspiration biopsies. Diagn 
Cytopathol. 2010;38:252–9.

 28. Cibas ES, Ali SZ. The Bethesda system for reporting 
thyroid cytopathology. Thyroid. 2009;19:1159–65.

 29. Prognosis. http://en.wikipedia.org/wiki/Prognosis# 
References.

 30. Hippocrates. http://en.wikipedia.org/wiki/Prognosis# 
References.

 31. Petosiris. http://en.wikipedia.org/wiki/Petosiris_to_ 
Nechepso.

 32. Bellazzi R, Zupan B. Predictive data mining in clini-
cal medicine: current issues and guidelines. Int J Med 
Inform. 2008;77:81–97.

 33. Breast cancer prognosis. http://www.cancer.gov/can-
certopics/pdq/treatment/breast/Patient.

 34. Prediction. http://en.wikipedia.org/wiki/Prediction.
 35. Copeland AH. Predictions and probabilities. Erkenntnis. 

2007;6:1572–8420.
 36. Pepe MS. Evaluating technologies for classifica-

tion and prediction in medicine. Stat Med. 2005;24: 
3687–96.

 37. Mahapatra A. Lung cancer – genomics and personal-
ized medicine. ACS Chem Biol. 2010;18:529–31.

 38. Bohr. http://www.quotationspage.com/quote/26159.
html.

 39. Personalized Medicine. http://www.sciencedaily.com/
news/health_medicine/personalized_medicine/.

 40. Jain KK. Innovative diagnostic technologies and their 
significance for personalized medicine. Mol Diagn 
Ther. 2010;14:141–7.

 41. U.S. Congressional Budget Office. The long-term out-
look for health care spending. http://www.cbo.gov/ftp-
docs/MainText.3.1.shtml. Accessed 12 June 2010.

 42. Traficant J: What 2 liver transplants taught me about 
how to heal health care. http://www.foxnews.com/
jim-traficant-healthcare. Accessed 12 June 2010.

 43. Drew EB: The quiet victory of the cigarette lobby: 
how it found the best filter yet – Congress. Atlantic 
Monthly. September 1965.



875 Prognostication and Prediction in Anatomic Pathology

 44. Deyo RA, Patrick DL. Hope or hype: the obsession 
with medical advances and the high cost of false 
promises. New York: AMACOM; 2005.

 45. Hanby AM. The pathology of breast cancer and the 
role of the histopathology laboratory. Clin Oncol. 
2005;17:234–9.

 46. Korkolis DP, Tsoli E, Fouskakis D, et al. Tumor histol-
ogy and stage but not p53, Her2-neu, or cathepsin-D 
expression are independent prognostic factors in breast 
cancer patients. Anticancer Res. 2004;24:2061–8.

 47. Bilous M, Ades C, Armes J, et al. Predicting the HER2 
status of breast cancer from basic histopathology data: 
an analysis of 1500 breast cancers as part of the 
HER2000 International Study. Breast. 2003;12:92–8.

 48. Kim C, Taniyama Y, Paik S. Gene-expression-based 
prognostic and predictive markers for breast cancer. 
Arch Pathol Lab Med. 2009;133:855–9.

 49. Sandhu R, Parker JS, Jones WD, Livasy CA, Coleman 
WB. Microarray-based gene expression profiling for 
molecular classification of breast cancer and identifi-
cation of new targets for therapy. Lab Med. 
2010;41:364–72.

 50. Rettig RA, Jacobson PD, Farquhar CM, Aubry WM. 
False hope: bone marrow transplantation for breast 
cancer. New York: Oxford University Press; 2007.

 51. Gonzalez-Angulo AM, Morales-Vasquez F, Hortobagyi 
GN. Overview of resistance to systemic therapy in 
patients with breast cancer. Adv Exp Med Biol. 
2007;608:1–22.

 52. Anonymous. Cancer Statistics, 2009. Oklahoma City: 
American Cancer Society; 2009.

 53. Page DL, Jensen RA, Simpson JF. Routinely-available 
indicators of prognosis in breast cancer. Breast Cancer 
Res Treat. 1998;51:195–208.

 54. Klar M, Foeldi M, Markert S, Gitsch G, Stickeler E, 
Watermann D. Good prediction of the likelihood for 
sentinel lymph node metastasis by using the MSKCC 
nomogram in a German breast cancer population. Ann 
Surg Oncol. 2009;16:36–42.

 55. Rosen PP, Groshen S, Kinne DW, Norton L. Factors 
influencing prognosis in node-negative breast carcinoma: 
analysis of 767 T1N0M0./T2N0M0 patients with long-
term followup. J Clin Oncol. 1993;11:2090–100.

 56. Scawn R, Shousha S. Morphologic spectrum of estro-
gen receptor-negative breast carcinoma. Arch Pathol 
Lab Med. 2002;126:325–30.

 57. Robertson JF, Ellis IO, Pearson D, Elston CW, 
Nicholson RI, Blamey RW. Biological factors of 
prognostic significance in locally-advanced breast 
cancer. Breast Cancer Res Treat. 1994;29:259–64.

 58. Houssami N, Ciatto S, Ellis IO, Ambrogetti D. 
Underestimation of malignancy in breast core-needle 
biopsy: concepts and precise overall and category-spe-
cific estimates. Cancer. 2007;109:487–95.

 59. Houssami N, Ciatto S, Bilous M, Vezzosi V, Bianchi 
S. Borderline breast core needle histology: predictive 
values for malignancy in lesions of uncertain malig-
nant potential. Br J Cancer. 2007;96:1253–7.

 60. Ciatto S, Houssami N, Ambrogetti D, et al. Accuracy 
and underestimation of malignancy of breast core 

needle biopsy: the Florence experience of over 4000 
consecutive biopsies. Breast Cancer Res Treat. 
2007;101:291–7.

 61. Lee AH, Denley HE, Pinder SE, et al. Excision biopsy 
findings of patients with breast needle core biopsies 
reported as suspicious of malignancy or lesion of 
uncertain malignant potential. Histopathology. 2003; 
42:331–6.

 62. Bonnett M, Wallis T, Rossmann M, et al. 
Histopathologic analysis of atypical lesions in image-
guided core breast biopsies. Mod Pathol. 2003;16: 
154–60.

 63. Dillon MF, McDermott EW, Hill AD, O’Doherty A, 
O’Higgins N, Quinn CM. Predictive value of breast 
lesions of “uncertain malignant potential” and “suspi-
cious for malignancy” determined by needle core 
biopsy. Ann Surg Oncol. 2007;14:704–11.

 64. Margenthaler JA, Duke D, Monsees BS, Baraton PT, 
Clark C, Dietz JR. Correlation between core biopsy 
and excisional biopsy in breast high-risk lesions. Am 
J Surg. 2006;192:534–7.

 65. Simpson JF, Page DL. Pathology of preinvasive and 
excellent-prognosis breast cancer. Curr Opin Oncol. 
2001;13:426–30.

 66. Page DL. Special types of invasive breast cancer, with 
clinical implications. Am J Surg Pathol. 2003;27: 
832–5.

 67. Pia-Foschini M, Reis-Filho JS, Eusebi V, Lakhani SR. 
Salivary gland-like tumours of the breast: surgical and 
molecular pathology. J Clin Pathol. 2003;56:497–506.

 68. Weigel RJ, Ikeda DM, Nowels KW. Primary squamous 
cell carcinoma of the breast. South Med J. 
1996;89:511–5.

 69. Van Hoeven KH, Drudis T, Cranor ML, Erlandson 
RA, Rosen PP. Low-grade adenosquamous carcinoma 
of the breast. A clinicopathologic study of 32 cases 
with ultrastructural analysis. Am J Surg Pathol. 
1993;17:248–58.

 70. Toikkanen S. Primary squamous cell carcinoma of the 
breast. Cancer. 1981;48:1629–32.

 71. Barnes PJ, Boutilier R, Chiasson D, Rayson D. 
Metaplastic breast carcinoma: clinical-pathologic 
characteristics and HER2/neu expression. Breast 
Cancer Res Treat. 2005;91:173–8.

 72. Beatty JD, Atwood M, Tickman R, Reiner M. 
Metaplastic breast cancer: clinical significance. Am J 
Surg. 2006;191:657–64.

 73. Foschini MP, Krausz T. Salivary gland-type tumors 
of the breast: a spectrum of benign and malignant 
tumors including “triple negative carcinomas” of low 
malignant potential. Semin Diagn Pathol. 2010;27: 
77–90.

 74. Ravdin PM. Should HER2 status be routinely mea-
sured for all breast cancer patients? Semin Oncol. 
1999;26(4 Supp 12):117–23.

 75. Yu JI, Choi DH, Park W, et al. Differences in prognos-
tic factors and patterns of failure between invasive 
micropapillary carcinoma and invasive ductal carci-
noma of the breast: matched case-control study. 
Breast. 2010;19:231–7.



88 M.R. Wick et al.

  76. Pettinato G, Manivel JC, Panico L, Sparano L, 
Petrella G. Invasive micropapillary carcinoma of the 
breast: clinicopathologic study of 62 cases of a 
poorly-recognized variant with highly-aggressive 
behavior. Am J Clin Pathol. 2004;121:857–66.

  77. Wade PM Jr, Mills SE, Read M, Cloud W, Lambert 
MJ III, Smith RE: Small-cell neuroendocrine (oat-
cell) carcinoma of the breast. Cancer. 1983;52:121–
5; Shin SJ, DeLellis RA, Ying L, Rosen PP. Small-cell 
carcinoma of the breast: a clinicopathologic and 
immunohistochemical study of nine patients. Am J 
Surg Pathol. 2000;24:1231–8; Yamaguchi R, Tanaka 
M, Otsuka H, et al. Neuroendocrine small cell carci-
noma of the breast: report of a case. Med Mol 
Morphol. 2009;42:58–61.

  78. Richardson RL, Weiland LH. Undifferentiated 
small-cell carcinomas in extrapulmonary sites. 
Semin Oncol. 1982;9:484–96.

  79. Moore JM. Undifferentiated adenocarcinoma of 
breast. Tex State J Med. 1953;49:603–4.

  80. Kirsten F, Chi CH, Leary JA, Ng AB, Hedley DW, 
Tattersall MH. Metastatic adeno- or undifferentiated 
carcinoma from an unknown site – natural history 
and guidelines for identification of treatable subsets. 
Q J Med. 1987;62:143–61.

  81. Soomro S, Shousha S, Taylor P, Shepard HJ, 
Feldmann M. c-erbB-2 expression in different histo-
logical types of invasive breast carcinoma. J Clin 
Pathol. 1991;44:211–4.

  82. Martinazzi M, Crivelli F, Zampatti C, Martinazzi S. 
Epidermal growth factor receptor immunohistochem-
istry in different histological types of infiltrating 
breast carcinoma. J Clin Pathol. 1993;46:1009–10.

  83. Miller WR, Ellis IO, Sainsbury J, Dixon JM. ABCs 
of breast diseases: prognostic factors. Br Med J. 
1994;309:1573–6.

  84. Mansour EG, Ravdin PM, Dressler L. Prognostic 
factors in early breast carcinoma. Cancer. 
1994;74:381–400.

  85. Seidman JD, Schnaper LA, Aisner SC. Relationship 
of the size of the invasive component of the primary 
breast carcinoma to axillary lymph node metastasis. 
Cancer. 1995;75:65–71.

  86. Carter CL, Allen C, Henson DE. Relation of tumor 
size, lymph node status, and survival in 24, 740 
breast cancer cases. Cancer. 1989;63:181–7.

  87. Iwasa Y, Nowak MA, Michor F. Evolution of resistance 
during clonal expansion. Genetics. 2006;172:2557–66.

  88. Garcia SB, Norelli M, Wright NA. The clonal origin 
and clonal evolution of epithelial tumors. Int J Exp 
Pathol. 2000;81:89–116.

  89. Flanagan FL, McDermott MB, Barton PT, et al. 
Invasive breast cancer: mammographic measure-
ment. Radiology. 1996;199:819–23.

  90. Bloom HJ, Richardson WW. Histological grading 
and prognosis in breast cancer: a study of 1409 cases, 
of which 359 have been followed for 15 years. Br J 
Cancer. 1957;11:359–77.

  91. Scarff RW, Torloni H. Histological typing of breast 
tumors. In: International histological classification 

of tumours, No. 2, Vol. 2. Geneva: World Health 
Organization; 1968. p. 13–20.

  92. Le Doussal V, Tubiana-Hulin M, Friedman S, Hacene 
K, Spyratos F, Brunet M. Prognostic value of histo-
logic grade nuclear components of Scarff-Bloom-
Richardson (SBR): an improved score modification 
based on a multivariate analysis of 1262 invasive 
ductal breast carcinomas. Cancer. 1989;64:1914–21.

  93. Simpson JF, Page DL. The role of pathology in pre-
malignancy and as a guide for treatment and progno-
sis in breast cancer. Semin Oncol. 1996;23:428–35.

  94. Simpson JF, Page DL. Status of breast cancer prog-
nostication based on histopathologic data. Am J Clin 
Pathol. 1994;102(Suppl):S3–8.

  95. Elston CW, Ellis IO. Pathological prognostic factors in 
breast cancer. I. The value of histological grade in 
breast cancer: experience from a large study with long-
term followup. Histopathology. 1991;19:403–10.

  96. Frierson Jr HF, Wolber RA, Berean KW, et al. Inter-
observer reproducibility of the Nottingham modifi-
cation of the Bloom and Richardson histologic 
grading scheme for infiltrating ductal carcinoma. 
Am J Clin Pathol. 1995;103:195–8.

  97. Contesso G, Jotti GS, Bonadonna G. Tumor grade  
as a prognostic factor in primary breast cancer. Eur  
J Cancer Clin Oncol. 1989;25:403–9.

  98. Todd JH, Dowle C, Williams MR, et al. Confirmation 
of a prognostic index in primary breast cancer. Br  
J Cancer. 1987;56:489–92.

  99. Imber G. Genius on the edge. New York: Kaplan; 
2010.

 100. Williams BC. The history of mastectomy. http://
www.ehow.com/about_5505904_history-mastectomy.
html. Accessed 19 June 2010.

 101. Halsted WS. The results of radical operations for the 
cure of carcinoma of the breast performed at the 
Johns Hopkins Hospital from June 1889 to January 
1894. Johns Hopkins Hosp Rep. 1894;4:297–327.

 102. Bland CS. The Halsted mastectomy: present illness 
and past history. West J Med. 1981;134:549–55.

 103. Wick MR. Principles of evidence-based medicine as 
applied to “sentinel” lymph node biopsies. Pathol 
Case Rev. 2008;13:102–8.

 104. Fisher B, Wolmark N, Redmond C, et al. Findings 
from NSABP Protocol No. B-04: comparison of 
radical mastectomy with alternative treatments. II. 
The clinical and biologic significance of medial-
central breast cancers. Cancer. 1981;48:1863–72.

 105. Sanghani M, Balk EM, Cady B. Impact of axillary 
lymph node dissection on breast cancer outcome in 
clinically node negative patients: a systematic review 
and meta-analysis. Cancer. 2009;115:1613–20.

 106. Collan YU, Eskelinen MJ, Nordling SA, et al. 
Prognostic studies in breast cancer – multivariate com-
bination of nodal status, proliferation index, tumor 
size, and DNA ploidy. Acta Oncol. 1994;33:873–8.

 107. Quiet CA, Ferguson DJ, Weichselbaum RR, Hellman 
S. Natural history of node-positive breast cancer: the 
curability of small cancers with a limited number of 
positive nodes. J Clin Oncol. 1996;14:3105–11.



895 Prognostication and Prediction in Anatomic Pathology

 108. Beal SH, Martinez SR, Canter RJ, Chen SL, Khatri 
VP, Bold RJ. Survival in 12, 653 breast cancer patients 
with extensive axillary lymph node metastasis in the 
anthracycline era. Med Oncol. 2010;27(4):1420–4.

 109. Sahin AA, Guray M, Hunt KK. Identification and 
biologic significance of micrometastases in axillary 
lymph nodes in patients with invasive breast cancer. 
Arch Pathol Lab Med. 2009;133:869–78.

 110. Hansen NM, Grube B, Ye X, Turner RR, Brenner 
RJ, Sim MS, et al. Impact of micrometastases in the 
sentinel node of patients with invasive breast cancer. 
J Clin Oncol. 2009;27:4679–84.

 111. Viale G, Dell’Orto P, Biasi MO, et al. Comparative 
evaluation of an extensive histopathologic examination 
and a real-time reverse-transcription-polymerase chain 
reaction assay for mammaglobin and cytokeratin- 
19 on axillary sentinel lymph nodes of breast carcinoma 
patients. Ann Surg. 2008;247:136–42.

 112. Douglas-Jones AG, Woods V. Molecular assessment 
of sentinel lymph nodes in breast cancer manage-
ment. Histopathology. 2009;55:107–13.

 113. Karam AK, Hsu M, Patil S, et al. Predictors of com-
pletion axillary lymph node dissection in patients 
with positive sentinel lymph nodes. Ann Surg Oncol. 
2009;16:1952–8.

 114. Pernas S, Gil M, Benítez A, et al. Avoiding axillary 
treatment in sentinel lymph node micrometastases of 
breast cancer: a prospective analysis of axillary or 
distant recurrence. Ann Surg Oncol. 2010;17:772–7.

 115. Gurleyik G, Gurleyik E, Aker F, et al. Lymphovascular 
invasion, as a prognostic marker in patients with inva-
sive breast cancer. Acta Chir Belg. 2007;107:284–7.

 116. Nime FA, Rosen PP, Thaler HT, Ashikari R, Urban 
JA. Prognostic significance of tumor emboli in intra-
mammary lymphatics in patients with mammary 
carcinoma. Am J Surg Pathol. 1977;1:25–30.

 117. Rosen PP. Tumor emboli in intramammary lymphat-
ics in breast carcinoma: pathologic criteria for diag-
nosis and clinical significance. Pathol Annu. 
1983;18(Pt 2):215–32.

 118. Lee AH, Pinder SE, Macmillan RD, Mitchell M, Ellis 
IO, Elston CW, et al. Prognostic value of lymphovascu-
lar invasion in women with lymph node negative inva-
sive breast carcinoma. Eur J Cancer. 2006;42:357–62.

 119. Trudeau ME, Pritchard KI, Chapman JA, et al. 
Prognostic factors affecting the natural history of 
node-negative breast cancer. Breast Cancer Res 
Treat. 2005;89:35–45.

 120. de Mascarel I, MacGrogan G, Debled M, 
Sierankowski G, Brouste V, Mathoulin-Pélissier S, 
et al. D2-40 in breast cancer: should we detect more 
vascular emboli? Mod Pathol. 2009;22:216–22.

 121. Kahn HJ, Marks A. A new monoclonal antibody, 
D2-40, for detection of lymphatic invasion in pri-
mary tumors. Lab Invest. 2002;82:1255–12557.

 122. Arnaout-Alkarain A, Kahn HJ, Narod SA, Sun PA, 
Marks AN. Significance of lymph vessel invasion 
identified by the endothelial lymphatic marker 
D2-40 in node negative breast cancer. Mod Pathol. 
2007;20:183–91.

 123. Almholt K, Nielsen BS, Frandsen TL, et al. 
Metastasis of transgenic breast cancer in plasmino-
gen activator inhibitor-1 gene-deficient mice. 
Oncogene. 2003;22:4389–97.

 124. Kilinc N, Yaldiz M. p53, c-erbB-2 expression, and 
steroid hormone receptors in breast carcinoma:  
correlations with histopathological parameters. Eur  
J Gynaecol Oncol. 2004;25:606–10.

 125. Reed W, Hannisdal E, Boehler PJ, Gundersen S, Host 
H, Marthin J. The prognostic value of p53 and c-erbB-2 
immunostaining is overrated for patients with lymph 
node-negative breast carcinoma: a multivariate analy-
sis of prognostic factors in 613 patients with a fol-
lowup of 14-30 years. Cancer. 2000;88:804–13.

 126. Chiu CG, Masoudi H, Leung S, et al. HER-3 overex-
pression in prognostic of reduced breast cancer 
survival: a study of 4046 patients. Ann Surg. 
2010;251:1107–16.

 127. Blows FM, Driver KE, Schmidt MK, et al. Subtyping 
of breast cancer by immunohistochemistry to inves-
tigate a relationship between subtype and short and 
long term survival: a collaborative analysis of data 
for 10, 159 cases from 12 studies. PLoS Med. 
2010;7(5):e1000279.

 128. Putti TC, El-Rehim DM, Rakha EA, et al. Estrogen 
receptor-negative breast carcinomas: a review of 
morphology and immunophenotypical analysis. 
Mod Pathol. 2005;18:26–36.

 129. Rakha EA, El-Sayed ME, Green AR, Lee AH, 
Robertson JF, Ellis IO. Prognostic markers in triple-
negative breast cancer. Cancer. 2007;109:25–32.

 130. Erdem O, Dursun A, Coskun U, Gunel N. The prog-
nostic value of p53 and c-erbB-2 expression, prolif-
erative activity, and angiogenesis in node-negative 
breast carcinoma. Tumori. 2005;91:46–52.

 131. Horita K, Yamaguchi A, Hirose K, et al. Prognostic 
factors affecting disease-free survival rate following 
surgical resection of primary breast cancer. Eur  
J Histochem. 2001;45:73–84.

 132. Lialiaris TS, Georgiou G, Sivridis E, et al. Prognostic 
and predictive factors of invasive ductal breast carci-
nomas. J BUON. 2010;15:79–88.

 133. Lai P, Tan LK, Chen B. Correlation of HER-2 status 
with estrogen and progesterone receptors and histo-
logic features in 3, 655 invasive breast carcinomas. 
Am J Clin Pathol. 2005;123:541–6.

 134. Cao XX, Xu JD, Liu XL, et al. RACK1: a superior 
independent predictor for poor clinical outcome in 
breast cancer. Int J Cancer. 2009;127(5):1172–9.

 135. Haupt B, Ro JY, Schwartz MR. Basal-like breast car-
cinoma: a phenotypically distinct entity. Arch Pathol 
Lab Med. 2010;134:130–3.

 136. Mirza M, Shaughnessy E, Hurley JK, et al. 
Osteopontin-c is a selective marker of breast cancer. 
Int J Cancer. 2008;122:889–97.

 137. Sigurdsson H, Baldetorp B, Borg A, et al. Indicators 
of prognosis in node-negative breast cancer. N Engl 
J Med. 2990;322:1045–53.

 138. Sasano H. Histopathological prognostic factors 
in early breast carcinoma: an evaluation of cell 



90 M.R. Wick et al.

 proliferation in carcinoma cells. Expert Opin 
Investig Drugs. 2010;19 Suppl 1:S5–11.

 139. Reis-Filho JS, Lakhani SR. Breast cancer special 
types: why bother? J Pathol. 2008;216:394–8.

 140. Weigelt B, Geyer FC, Natrajan R, et al. The molecu-
lar underpinning of lobular histological growth pat-
tern: a genome-wide transcriptomic analysis of 
invasive lobular carcinomas and grade- and molecu-
lar subtype-matched invasive ductal carcinomas of 
no special type. J Pathol. 2010;220:45–57.

 141. Schnitt SJ. Classification and prognosis of invasive 
breast cancer: from morphology to molecular tax-
onomy. Mod Pathol. 2010;23 Suppl 2:S60–4.

 142. Schmidt C. Assays that predict outcomes make slow 
progress toward prime time. J Natl Cancer Inst. 
2010;102:677–9.

 143. Thuerigen O, Schneeweiss A, Toedt G, et al. Gene 
expression signature predicting pathologic complete 
response with gemcitabine, epirubicin, and docetaxel 
in primary breast cancer. J Clin Oncol. 2006;24: 
1839–45.

 144. Végran F, Boidot R, Coudert B, et al. Gene expres-
sion profile and response to trastuzumab-docetaxel-
based treatment in breast carcinoma. Br J Cancer. 
2009;101:1357–64.

 145. Bohn OL, Nasir I, Brufsky A, et al. Biomarker pro-
file in breast carcinomas presenting with bone metas-
tasis. Int J Clin Exp Pathol. 2009;3:139–46.

 146. Nuyten DS, Kreike B, Hart AA, et al. Predicting a local 
recurrence after breast-conserving therapy by gene 
expression profiling. Breast Cancer Res. 2006;8:R62.

 147. Saal LH, Johansson P, Holm K, et al. Poor prognosis 
in carcinoma is associated with a gene expression sig-
nature of aberrant PTEN tumor suppressor pathway 
activity. Proc Natl Acad Sci USA. 2007;104:7564–9.

 148. Karlsson E, Delle U, Danielsson A, et al. Gene 
expression variation to predict 10-year survival in 
lymph-node-negative breast cancer. BMC Cancer. 
2008;8:254.

 149. Konstantinovsky S, Smith Y, Zilber S, et al. Breast 
carcinoma cells in primary tumors and effusions 
have different gene array profiles. J Oncol. 
2010;2010:969084.

 150. Staaf J, Ringnér M, Vallon-Christersson J, et al. 
Identification of subtypes in human epidermal 
growth factor receptor 2–positive breast cancer 
reveals a gene signature prognostic of outcome.  
J Clin Oncol. 2010;28:1813–20.

 151. Charpin C, Secq V, Giusiano S, et al. A signature 
predictive of disease outcome in breast carcinomas, 
identified by quantitative immunocytochemical 
assays. Int J Cancer. 2009;124:2124–34.

 152. Kreipe HH, Ahrens P, Christgen M, Lehmann U, 
Langer F. Beyond staging, typing, and grading: new 
challenges in breast cancer pathology. Pathologe. 
2010;31:54–9.

 153. Giusiano S, Secq V, Carcopino X, et al. 
Immunohistochemical profiling of node negative 
breast carcinomas allows prediction of metastatic 
risk. Int J Oncol. 2010;36:889–98.

 154. Cox G, Jones JL, Andi A, Waller DA, O’Byrne KJ. 
A biological staging model for operable non-small-
cell lung cancer. Thorax. 2001;56:561–6.

 155. Li AR, Chitale D, Riely GJ, et al. EGFR mutations in 
lung adenocarcinomas: clinical testing experience 
and relationship to EGFR gene copy number and 
immunohistochemical expression. J Mol Diagn. 
2008;10:242–8.

 156. Sholl LM, Xiao Y, Joshi V, et al. EGFR mutation is a 
better predictor of response to tyrosine kinase inhibi-
tors in non-small cell lung carcinoma than FISH, 
CISH, and immunohistochemistry. Am J Clin Pathol. 
2010;133:922–34.

 157. Anonymous. Types of data. http://www.changing-
minds.org/explanations/research/measurements/
types-data.htm. Accessed 19 June 2010.

 158. Stroup RM, Pinkus GS. S100-immunoreactivity in 
primary and metastatic carcinoma of the breast: a 
potential source of error in immunodiagnosis. Hum 
Pathol. 1988;19:949–53.

 159. Wick MR, Patterson JW. Multimodal pathologic 
diagnosis of malignant melanoma: integration of 
morphology, histochemistry, immunohistology, and 
electron microscopy. J Histotechnol. 2003;26:253–8.

 160. Wick MR, Lillemoe TJ, Copland GT, Swanson PE, 
Manivel JC, Kiang DT. Gross cystic disease fluid 
protein-15 as a marker for breast cancer. Hum Pathol. 
1989;20:281–7.

 161. Miller RT, Swanson PE, Wick MR. Fixation and 
epitope retrieval in diagnostic immunohistochemistry: 
a concise review with practical considerations. Appl 
Immunohistochem Mol Morphol. 2000;8:228–35.

 162. Idikio HA. Immunohistochemistry in diagnostic sur-
gical pathology: contributions of protein life-cycle, 
use of evidence-based methods, and data normaliza-
tion on interpretation of immunohistochemical 
stains. Int J Clin Exp Pathol. 2010;3:169–76.

 163. Allred DC, Carlson RW, Berry DA, et al. NCCN 
Task Force Report: estrogen receptor and progester-
one receptor testing in breast cancer by immunohis-
tochemistry. J Natl Compr Cancer Netw. 2009;Suppl 
6:S1–21.

 164. Canadian Association of Pathologists-Association 
canadienne des pathologistes National Standards 
Committee, Torlakovic EE, Riddell R, Banerjee D, 
et al. Best practice recommendations for standard-
ization of immunohistochemistry tests. Am J Clin 
Pathol. 2010;133:354–65.

 165. Jacobs TW, Gown AM, Yaziji H, Barnes MJ, Schnitt 
SJ. Comparison of fluorescence in situ hybridization 
and immunohistochemistry for the evaluation of 
HER-2/neu in breast cancer. J Clin Oncol. 
1999;17:1974–82.

 166. Kakar S, Puangsuvan N, Stevens JM, et al. HER-2/
neu assessment in breast cancer by immunohis-
tochemistry and fluorescence in situ hybridization: 
comparison of results and correlation with survival. 
Mol Diagn. 2000;5:199–207.

 167. Van de Vijver MJ. Assessment of the need and appro-
priate method for testing for the human epidermal 



915 Prognostication and Prediction in Anatomic Pathology

growth factor receptor-2 (HER2). Eur J Cancer. 
2001;37 Suppl 1:11–7.

 168. McCormick SR, Lillemoe TJ, Beneke J, Schrauth J, 
Reinartz J. HER2 assessment by immunohistochem-
ical analysis and fluorescence in situ hybridization: 
comparison of HercepTest and PathVysion commer-
cial assays. Am J Clin Pathol. 2002;117:935–43.

 169. Lal P, Salazar PA, Hudis CA, Ladanyi M, Chen B. 
HER-2 testing in breast cancer using immunohis-
tochemical analysis and fluorescence in-situ hybrid-
ization: a single-institution experience of 2, 279 
cases and comparison of dual-color and single-color 
scoring. Am J Clin Pathol. 2004;121:631–6.

 170. Ross JS, Fletcher JA, Bloom KJ, et al. HER-2/neu 
testing in breast cancer. Am J Clin Pathol. 
2003;120(Suppl):S53–71.

 171. Mrozkowiak A, Olszewski WP, Piascik A, Olszewski 
WT. HER2 status in breast cancer determined  
by IHC and FISH: comparison of the results. Pol  
J Pathol. 2004;55:165–71.

 172. Ellis CM, Dyson MJ, Stephenson TJ, Maltby EL. 
HER2 amplification status in breast cancer: a com-
parison between immunohistochemical staining and 
fluorescence in situ hybridization using manual and 
automated quantitative image analysis scoring tech-
niques. J Clin Pathol. 2005;58:710–4.

 173. Dolan M, Snover DC. Comparison of immunohis-
tochemical and fluorescence in situ hybridization 
assessment of HER-2 status in routine practice. Am 
J Clin Pathol. 2005;123:766–70.

 174. Benohr P, Henkel V, Speer R, et al. HER-2/neu 
expression in breast cancer – a comparison of different 
diagnostic methods. Anticancer Res. 2005;25(3B): 
1895–900.

 175. Egervari K, Szollosi Z, Nemes Z, Kaczur V. Comparison 
of immunohistochemical and fluorescence in situ 
hybridization assessment of HER-2 status in routine 
practice. Am J Clin Pathol. 2006;125:155–6.

 176. Sui W, Ou M, Chen J, et al. Comparison of immuno-
histochemistry (IHC) and fluorescence in situ 
hybridization (FISH) assessment for HER-2 status in 
breast cancer. World J Surg Oncol. 2009;7:83.

 177. Mayr D, Heim S, Weyrauch K, et al. Chromogenic in 
situ hybridization for HER-2/neu-oncogene in breast 
cancer: comparison of a new dual-color chromoge-
nic in situ hybridization with immunohistochemistry 
and fluorescence in situ hybridization. Histopathology. 
2009;55:716–23.

 178. Krug LM, Crapanzano JP, Azzoli CG, et al. Imatinib 
mesylate lacks activity in small cell lung carcinoma 
expression c-kit protein: a phase II clinical trial. 
Cancer. 2005;103:2128–31.

 179. Koch CA, Gimm O, Vortmeyer AO, et al. Does the 
expression of c-kit (CD117) in neuroendocrine 
tumors represent a target for therapy? Ann NY Acad 
Sci. 2006;1073:517–26.

 180. Sharma S. Applied multivariate techniques. 
Hoboken: Wiley; 1995.

 181. Rasmussen BB, Thorpe SM, Norgaard T, Rasmussen 
J, Agdal N, Rose C. Immunohistochemical steroid 

receptor detection in frozen breast cancer tissue: a  
multicenter investigation. Acta Oncol. 1988;27:757–60.

 182. Andersen J, Thorpe SM, King WJ, et al. The prog-
nostic value of immunohistochemical estrogen 
receptor analysis in paraffin-embedded and frozen 
sections versus that of steroid-binding assays. Eur J 
Cancer. 1990;25:442–9.

 183. Wilbur DC, Willis J, Mooney RA, Fallon MA, Moynes 
R, di Sant’Agnese PA. Estrogen and progesterone 
receptor detection in archival formalin-fixed, paraffin-
embedded tissue from breast carcinoma: a comparison 
of immunohistochemistry with the dextran-coated 
charcoal assay. Mod Pathol. 1992;5:79–84.

 184. Valgardsdottir R, Tryggvadottir L, Steinarsdottir M, 
et al. Genomic instability and poor prognosis associ-
ated with abnormal TP53 in breast carcinomas: 
molecular and immunohistochemical analysis. 
APMIS. 1997;105:121–30.

 185. Sjogren S, Inganas M, Norberg T, et al. The p53 
gene in breast cancer: prognostic value of comple-
mentary DNA sequencing versus immunohistochem-
istry. J Natl Cancer Inst. 1996;88:173–82.

 186. Thorlacius S, Thorgilsson B, Bjornsson J, et al. TP53 
mutations and abnormal p53 protein staining in 
breast carcinomas related to prognosis. Eur J Cancer. 
1995;31A:1856–61.

 187. Umekita Y, Kobayashi K, Saheki T, Yoshida H. Nuclear 
accumulation of p53 correlates with mutations in the p53 
gene on archival paraffin-embedded tissues of human 
breast cancer. Jpn J Cancer Res. 1994;85:825–30.

 188. MacGeoch C, Barnes DM, Newton JA, et al. p53 
protein detected by immunohistochemical staining is 
not always mutant. Dis Markers. 1993;11:239–50.

 189. Dunn JM, Hastrich DJ, Newcomb P, Webb JC. 
Maitland, Farndon JR: Correlation between p53 
mutations and antibody staining in breast carcinoma. 
Br J Surg. 1993;80:1410–2.

 190. Miles J: Getting the sample size right: a brief intro-
duction to power analysis. http://www.jeremymiles.
co.uk/misc/power/. Accessed 19 June 2010.

 191. The Health Insurance Portability and Accountability 
Act. http://en.wikipedia.org/wiki/Health_Insurance_
Portability_and_Accountability_Act/. Accessed 19 
June 2010.

 192. Anonymous. In-Memoriam: William L. McGuire. 
Breast Cancer Res Treat 1992;23:7–15.

 193. McGuire WL. Breast cancer prognostic factors: eval-
uation guidelines. J Natl Cancer Inst. 1991;83:154–5.

 194. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, 
McGuire WL. Human breast cancer: correlation of 
relapse and survival with amplification of the HER-2/
neu oncogene. Science. 1987;235:177–82.

 195. Trastuzumab. http://en.wikipedia.org/wiki/trastuzumab/. 
Accessed 19 June 2010.

 196. Kute T, Lack CM, Willingham M, et al. Development 
of herceptin resistance in breast cancer cells. 
Cytometry. 2004;57A:86–93.

 197. Tan AR, Swain SM. Ongoing adjuvant trials with 
trastuzumab in breast cancer. Semin Oncol. 2002;30 
(5 Suppl 16):54–64.



92 M.R. Wick et al.

 198. Nahta R, Esteva FJ. HER-2-targeted therapy: lessons 
learned and future directions. Clin Cancer Res. 
2003;9:5038–48.

 199. Romond EH, Perez EA, Bryant J, et al. Trastuzumab 
plus adjuvant chemotherapy for operable HER-2-
positive breast cancer. N Engl J Med. 2005;353: 
1673–84.

 200. Piccart-Gebhart MJ, Procter M, Leyland-Jones B, 
et al. Trastuzumab after adjuvant chemotherapy in 
HER-2-positive breast cancer. N Engl J Med. 2005; 
353:1659–72.

 201. Lewis R, Bagnall AM, Forbges C, et al. The clinical 
effectiveness of trastuzumab for breast cancer: a sys-
tematic review. Health Technol Assess. 2002;6:1–71.

 202. http://www.bpac.org/nz/magazine/2007/april/her-
ceptin.asp. Accessed 19 June 2010.

 203. http://www.sws-pct.nhs.uk/PEC/2005/061205/
Enc_08.pdf. Accessed 19 June 2010.

 204. Anonymous: Herceptin or trastuzumab: efficacy and 
side effects. http://healthlifeandstuff.com/2009/12/
herceptin-or-trastuzumab-efficacy-side-effects/. 
Accessed 19 June 2010.

 205. Abelson J, Collins PA. Media hyping and the “hercep-
tin access story:” an analysis of Canadian and UK 
newspaper coverage. Healthc Policy. 2009;4:e113–28.

 206. Hedgecoe AM. It’s money that matters: the financial 
context of ethical decision-making in modern bio-
medicine. Sociol Health Illn. 2006;28:768–84.

 207. Williams C, Brunskill S, Altman D, et al. Cost-
effectiveness of using prognostic information to select 
women with breast cancer for adjuvant systemic ther-
apy. Health Technol Assess. 2006;10:1–204.

 208. Nakhleh RE, Grimm EE, Idowu MO, Souers RJ, 
Fitzgibbons PL. Laboratory compliance with the 
American Society of Clinical Oncology/college of 
American Pathologists guidelines for human epider-
mal growth factor receptor 2 testing: a College of 
American Pathologists survey of 757 laboratories. 
Arch Pathol Lab Med. 2010;134:728–34.

 209. Sauter G, Lee J, Bartlett JM, Slamon DJ, Press MF. 
Guidelines for human epidermal growth factor 
receptor-2 testing: biologic and methodologic con-
siderations. J Clin Oncol. 2009;27:1323–33.

 210. Turashvili G, Leung S, Turbin D, et al. Interobserver 
reproducibility of HER2 immunohistochemical assess-
ment and concordance with fluorescent in situ hybrid-
ization (FISH): pathologist assessment compared to 
quantitative image analysis. BMC Cancer. 2009;9:165.

 211. Jacobs TW, Prioleau JE, Stillman IE, Schnitt SJ. 
Loss of tumor marker-immunostaining intensity on 
stored paraffin slides of breast cancer. J Natl Cancer 
Inst. 1996;88:1054–9.

 212. Mandrekar SJ, Sargent DJ. Predictive biomarker 
validation in practice: lessons from real trials. Clin 
Trials. 2010;7(5):567–73.

 213. Richter-Ehrenstein C, Muller S, Noske A, Schneider 
A. Diagnostic accuracy and prognostic value of core 
biopsy in the management of breast cancer: a series 
of 542 patients. Int J Surg Pathol. 2009;17:323–6.

 214. Nassar A, Radhakrishnan A, Cabrero IA, Cotsonis GA, 
Cohen C. Intratumoral heterogeneity of immunohis-
tochemical marker expression in breast carcinoma: a 
tissue microarray-based study. Appl Immunohistochem 
Mol Morphol. 2010;18(5):433–41.

 215. Powell WC, Hicks DG, Prescott N, et al. A new rab-
bit monoclonal antibody (4B5) for the immunohis-
tochemical (IHC) determination of the HER2 status 
in breast cancer: comparison with CB11, fluores-
cence in situ hybridization (FISH), and interlabora-
tory reproducibility. Appl Immunohistochem Mol 
Morphol. 2007;15:94–102.

 216. Wasielewski R, Hasselmann S, Ruschoff J, Fisseler-
Eckhoff A, Kreipe H. Proficiency testing of immu-
nohistochemical biomarker assays in breast cancer. 
Virchows Arch. 2008;453:537–43.

 217. Terry J, Torlakovic EE, Garratt J, et al. Implementation 
of a Canadian external quality assurance program for 
breast cancer biomarkers: an initiative of Canadian 
Quality Control in immunohistochemistry (cIQc) and 
Canadian Association of Pathologists (CAP) National 
Standards Committee/Immunohistochemistry. Appl 
Immunohistochem Mol Morphol. 2009;17:375–82.

 218. Hanley KZ, Birdsong GG, Cohen C, Siddiqui MT. 
Immunohistochemical detection of estrogen recep-
tor, progesterone receptor, and human epidermal 
growth factor receptor 2 expression in breast carci-
nomas: comparison on cell block, needle-core, and 
tissue block preparations. Cancer Cytopathol. 
2009;117:279–88.

 219. Liu YH, Xu FP, Rao JY, et al. Justification of the 
change from 10% to 30% for the immunohistochem-
ical HER2 scoring criterion in breast cancer. Am J 
Clin Pathol. 2009;132:74–9.

 220. Davoli A, Hocevar BA, Brown TL. Progression and 
treatment of HER2-positive breast cancer. Cancer 
Chemother Pharmacol. 2010;65:611–23.

 221. Walker JR, Singal PK, Jassal DS. The art of healing 
broken hearts in breast cancer patients: trastuzumab 
and heart failure. Exp Clin Cardiol. 2009;14:e62–7.

 222. Köninki K, Barok M, Tanner M, et al. Multiple 
molecular mechanisms underlying trastuzumab and 
lapatinib resistance in JIMT-1 breast cancer cells. 
Cancer Lett. 2010;294:211–9.

 223. Tagliabue E, Balsari A, Campiglio M, Pupa SM. 
HER2 as a target for breast cancer therapy. Expert 
Opin Biol Ther. 2010;10:711–24.

 224. Geiger S, Lange V, Suhl P, Heinermann V, Stemmler 
HJ. Anticancer therapy-induced cardiotoxicity: review 
of the literature. Anticancer Drugs. 2010;21:578–90.

 225. Baselga J. Herceptin alone or in combination with 
chemotherapy in the treatment of HER2-positive 
metastatic breast cancer: pivotal trials. Oncology. 
2001;61 Suppl 2:14–21.

 226. Dawood S, Broglio K, Buzdar AU, Hortobagyi GN, 
Giordano SH. Prognosis of women with metastatic 
breast cancer by HER2 status and trastuzumab treat-
ment: an institutional-based review. J Clin Oncol. 
2010;28:92–8.



935 Prognostication and Prediction in Anatomic Pathology

 227. Elkin EB, Weinstein MC, Winer EP, Kuntz KM, 
Schnitt SJ, Weeks JC. HER-2 testing and trastuzumab 
therapy for metastatic breast cancer: a cost-effectiveness 
analysis. J Clin Oncol. 2004;22:854–63.

 228. Fitzgibbons PL, Page DL, Weaver D, et al. Prognostic 
factors in breast cancer. College of American 
Pathologists Consensus Statement 1999. Arch Pathol 
Lab Med. 2000;124:966–78.





95

In this chapter, I set out a framework for thinking 
critically about oncopathological  classification 
and diagnosis (C&D), organizing the  discussion 
around the central elements of the classification 
process: (1) the individual cases being classified 
(e.g., the individual  neoplasm, I

Neop
), (2) the 

groups formed by aggregating  individual cases 
similar in relevant respects (the neoplastic kind, 
K

Neop
), and (3) the classifier-diagnostician whose 

essential contribution is  evident at every stage of 
the process. Current research in molecular-genetic 
oncology suggests that I

Neop
’s are best regarded as 

evolutionary processes, that the groups formed by 
aggregating them with respect to their histogene-
sis are extensionally indeterminate family resem-
blance groups and that our view of the world of 
neoplasms at any given time results both from the 
way the world is and, equally, how we chose to 
visualize and conceptualize it.

We and the world co-create oncological 
 reality and problem cases – in-between cases, 
hybrid cases, and novel cases – are instructive 

in pointing to the inevitable failure of static 
classificatory grids to do justice to the complex-
ity of the individual neoplasm. This perspective 
has  fundamental consequences for the issues  
of concern to contemporary evidence based 
pathology (EBP).

Evidence-Based Pathology  
and Classification and Diagnostic 
Practices in Anatomic Pathology

Evidence-based medicine (EBM) is a conten-
tious topic with, for some, a problematic name. 
It is presented by its advocates as the long-
needed antidote to “clinical judgment” with 
what they take to be its subjective, anecdotal 
character and its privileging of uncodified clini-
cal expertise over published population-based 
experience. The antidote to anecdote offered by 
EBM is the statistical analysis of populations. 
The fruits of this approach are the evidence 
 provided by interventional  studies (e.g., con-
trolled clinical trials) and  observational studies 
(e.g., techniques of clinical epidemiology). 
Integration of such studies yields, among other 
things, clinical guidelines of various sorts for 
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medical conditions and a critical approach to 
biological markers used either for diagnosis or 
for hazarding a clinical prediction (i.e., risk, 
prognostic or predictive markers).

On the other hand, EBM’s detractors draw 
attention to the fundamental problem of popula-
tion-based studies – such studies tell us about pop-
ulations, not individuals. Thus, while clinical 
judgment and case-based reasoning (CBR) self-
consciously attend to the particularity and unique-
ness of the individual under consideration, 
population-based studies scrupulously strip away 
all of that detail replacing it with a handful of 
observed features. This is in service of generating 
stable, statistically credible population averages. 
Paradoxically, the use of EBM techniques still 
requires clinical judgment to decide whether the 
findings of a population-based study really apply 
to an individual patient who is not an exact fit to 
mythical “average patient” in the population stud-
ied; a special case is the patient with more than one 
disease. Particularly annoying for some critics of 
EBM is the name itself: it is seen as ideological 
and suggests, rather pointedly, that whatever phy-
sicians had been using to make diagnoses and 
decisions prior to the advent of EBM methodolo-
gies was not evidence-based. They argue that ele-
vating a particular way of thinking about clinical 
medicine – statistical reasoning as instantiated in 
EBM – to the exclusion of others is wrongheaded 
and unrealistic. The polemic continues to this day.

EBP, the recruitment of EBM principles in 
clinical and anatomic pathology, is in the process 
of defining itself. What part of this methodology 
has relevance to pathology? Certainly, much of 
the methodological focus of EBM is irrelevant to 
diagnostic and predictive pathology: profession-
ally, we have little to do with making decisions 
about alternative therapies given a particular 
diagnosis. Ours is largely a noninterventional, 
nonexperimental descriptive literature that finds 
itself in last place in the EBM quality ranking of 
types of clinical research. In addition, anatomic 
pathology faces unique difficulties in defining its 
study groups; transforming what is basically a 
complex, primarily visual classificatory experi-
ence into language sufficiently precise to be 
 followed by other patho logists and serve as the 
basis for reproducible assignments.

I prefer to think of both EBM and, by implica-
tion, EBP in less polemical terms. Statistical 
reasoning is one mode of thinking; CBR is another; 
and taxonomic reasoning, the style that dominates 
oncopathological classification, is yet another. 
Navigating through the complexities of an individ-
ual case – whether it be the clinical details of a 
patient or the histological particulars of that patient’s 
tissue – requires the application of all three. There 
are no non-ideological reasons to privilege one 
mode over another; they all play a role.

The spirit of EBP is reformatory. Do our cur-
rent C&D practices in anatomic pathology need 
fixing? Before I answer this question, I need to 
take an unvarnished look at oncopathological 
classifications, their construction and evolution, 
and the biological basis for the particular “messy” 
structure of their constituent elements: disease 
entities or neoplastic kinds (K

Neop
’s). It is the 

purpose of this chapter to provide a twenty-first 
century sketch of the situation.

This is not an easy topic as the foundational 
problems we confront in oncopathological C&D 
are widespread in the natural sciences. Indeed, 
much thought has been given to these topics in a 
variety of disciplines. Our discussion draws upon 
sources in contemporary molecular-genetic oncol-
ogy, biological systematics, the philosophy of biol-
ogy (and more broadly, the philosophy of science), 
cognitive and judgmental psychology, and statis-
tics. Taking our problems in oncopathology seri-
ously requires this kind of intellectual outreach.

Problem Cases in Anatomic Pathology

Efficient day-to-day diagnosis is, for the well-
trained surgical pathologist, usually straightfor-
ward. The majority of cases can be assigned without 
much difficulty, using the classification de jour, to 
established diagnostic categories. In this chapter, 
we will be concerned with the minority of problem 
cases that challenge us. Prominent examples include 
(1) in-between cases (“grey-zone” cases or border-
line cases) that fall into the apparently  seamless 
morphological multivariate continuum that bridges 
two kinds of neoplasms (K

Neop
’s); (2) hybrid cases 

that present confusing combinations of distinct pat-
terns from two or more distinguishable K

Neop
’s; and 
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(3) novel cases that combine features in a way that 
have never before been encountered. Problem cases 
are analogous to the patients with rare genetic met-
abolic defects that played a crucial role in develop-
ing our understanding of normal metabolic 
pathways; their analysis helps us understand how 
all oncopathological classification works.

Some Preliminaries

Scientific and Managerial Classifications 
of Neoplasms

We currently have two general strategies for the 
classification of neoplasms in surgical pathology 
and cytopathology: scientific classifications 
(S-classifications) in service of explanation and 
managerial classifications (M-classifications) in 
service of clinical prediction. S-classifications 
answer questions like “why this particular shared 
neoplastic phenotype?” Histogenetic classifica-
tions (HG-classifications) are paradigmatic of (but 
do not exhaust) S-classifications. By contrast, 
M-classifications are responsive to the question 
“What does the future hold for a patient suffering 
from an individual neoplasm (I

Neop
) with a particu-

lar phenotype?” M-classifications are fashioned to 
forecast future biological events based on clinical 
phenotype, F

Clin
(t), such as the risk of developing 

an invasive carcinoma given a particular histomor-
phologic feature (risk); the future clinical course 
after no specific therapy – prognosis; and the likely 
response to a specific therapy – prediction. Grading 
systems for common adult malignancies are para-
digmatic instances of M-Classifications.

The canonical classifications in oncopathology 
are hybrids of M-classification grids  superimposed 
on HG-classifications. The image to have in mind 
is that of a topological survey map with one set of 
boundaries marking the distribution of physical 
features such as peaks (the HG-classification) 
superimposed upon which is a second set of prag-
matic (“political”) boundaries reflecting the various 
discrete classes of an M-classification. The spirit of 
these two classificatory activities is quite different 
and involves very different types of taxonomic 
models: histogenetic models and statistical (or 
probabilistic) models, respectively. Histogenetic 

investigations are pursued in the spirit of biological 
taxonomy (the Linnaean classification of plants, 
for example) and its associated mode of reasoning; 
managerial investigations are in the spirit of clini-
cal epidemiology and its associated statistical and 
decision analytic mode of reasoning.

Diagnostic Problems Related to Lack  
of Expertise and Incomplete 
Information about an Individual Case

Many of the “problem” cases encountered in day-
 to-day pathology practice are resolved by gather-
ing more information and/or by recruiting expert 
opinion. There is much to be said about these two 
strategies and when they should be employed; this 
is not my concern here. I am interested in the limit-
ing case for which expertise and information are 
not at issue. Consider the relevant expert in pos-
session of ‘compete’ information concerning a 
 problematic case. A decision analytic device, the 
Clairvoyant, sharpens this idea. This is an imagi-
nary figure with full knowledge, who can, and will, 
answer truthfully and completely any question put 
to her. [1] However, the Clairvoyant is temporally 
constrained in two ways: she won’t tell you about 
the future state of the patient harboring the prob-
lematic I

Neop
 nor will she tell you about results that 

could be obtained employing technologies unavail-
able at the time of the expert’s interrogation. For 
example, in 1950 it wouldn’t do to ask her about 
the immunohistochemical findings for a particular 
problematic case. Why problem cases persist for 
the relevant expert with access to the Clairvoyant 
is the subject matter of this chapter.

Why Problem Cases Persist Even  
for the Relevant Expert with Access  
to a Clairvoyant?

I will use as an organizing framework for this 
discussion the principle players in C&D: (1) the 
complexity and uniqueness of individuals, the 
I

Neop
’s, being classified; (2) the heterogeneity 

of groups (the K
Neop

’s) formed by aggregating 
I

Neop
’s similar in relevant respects; and (3) the 

 classifier-diagnostician who puts it all together.
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Complexity and Uniqueness  
of the Individual Neoplasm (I

Neop
)

Complexity

As illustrated in Fig. 6.1, it is convenient to  discuss 
the complexity of the individual neoplasm (I

Neop
) 

at three anatomic levels: the neoplastic cell, the 
neoplastic tissue (neoplastic cells embedded in 
the nonneoplastic cells that comprise their envi-
ronment), and the clinically detectable neoplastic 
mass (Table 6.1). At the cellular level, the I

Neop
 

inherits the functional and microanatomical com-
plexity of its normal counterpart. The function of 
the normal cell is increasingly being framed in the 
language of biological systems and discussions of 
modules, pathways and global networks, nonlin-
ear interactions, emergent properties, and “down-
ward causation” fill the pages of molecular-genetics 
journals and textbooks [2]. Additionally, there has 
been a shift from an exclusive focus on the causal 
roles of genes to one that recognizes the impor-
tance of epigenetic modifications – DNA methy-
lations and histone modifications. These conceptual 
shifts have been mirrored in cancer molecular 
genetics. Thus, in recent years exclusive focus on 
single cancer genes has given way to talk of the 
dysregulation of cancer cells at multiple levels of 
cellular control including epigenetic alterations, 
chromosome copy number changes, DNA point 
mutations, and inversions and translocations [3]. 
It is now clear that, in general, there is no gene or 
handful of genes that are the cause of cancer, or 
indeed, any particular kind of cancer [4–7]. As of 
2009 at least 350 (1.6%) of the 22,000 protein-
coding genes in the human genome have been 
reported to show recurrent somatic mutations in 
cancer with strong evidence that these contribute 
to cancer development [8]. Thus, the neoplastic 
cells of the common adult cancers are genetically 
highly complex. This is evident both from low-
resolution cytogenetic studies and more recently 
in highly refined examinations cataloging sub-
microscopic chromosomal abnormalities. The 
Circos diagrams of a group of breast cancers 
shown in Fig. 6.2 provide a striking graphical rep-
resentation of this breathtaking complexity [9].

Fig. 6.1 Levels of organization. Cell and tissue levels are 
at the waist of the hourglass; they lie at the organizational 
midlevel. The molecular-to-cellular levels are split verti-
cally between structural (left) and functional (right) lev-
els; Oltvai and Barabási’s complexity pyramid is 
represented by the functional branch on the right [66]. 
The phenotypes corresponding to various levels are indi-
cated on the left: F

Clin
 = clinical phenotype (e.g., present-

ing signs and symptoms); F
Clin

(t) = future clinical course 
(forecasts about risk, prognosis, prediction); F

Gross
 = naked 

eye phenotype whether seen by the pathologist in the 
gross room, by the surgeon intraoperatively or by the radi-
ologist with imaging techniques; F

Hist
 = light microscopic 

phenotype; F
CytoGen

 = cytogenetic phenotype. “Level-hopping” 
is indicated on the right both -omic (gene expression 
arrays, proteomics, etc.) and pre-omic

Table 6.1 Characteristics of INeop
’s

Complexity
Cellular level
Tissue level
Mass level

Context sensitivity
Uniqueness
Summarizing Metaphors

Malignant gestation
Viral quasi-species
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The I
Neop

 viewed as a tissue exhibits another layer 
of complexity. Neoplastic tissues have two constitu-
ents: neoplastic cells, typically arranged into paro-
dies of structures normal to the anatomic site of 
origin, and nonneoplastic cells. The construction, 
evolution, and maintenance of a neoplastic tissue 
involve communication among the tumor cells and 
relevant nonneoplastic cell types. Well-studied 
examples include the vascularization of the I

Neop
 

[10], the prominent role of the  macrophage in can-
cer initiation and malignant progression [11], and 
participation of myoepithelial and  various stromal 
cells in modulating the proliferation,  survival, polar-
ity, differentiation state, and invasive capacity of 
breast cancer cells [12–14]. In conclusion, while it 
is generally accepted that tumor  initiation and pro-
gression are predominantly driven by acquired 
genetic alterations of neoplastic cells, the crucial 
importance of the microenvironment has become 
apparent in recent years. Taken together, neoplastic 
cells and their nonneoplastic interactants constitute 
a microecological system [15].

The I
Neop

 viewed as a clinically detectable mass 
reveals yet another level of complexity: evolution-
ary complexity. The earliest radiologically detect-
able solid malignancy has typically gone through 
at least 30 replications and consists of a billion or 
more cells. Histologically, this mass appears as a 

crazy quilt of dozens of genealogically related 
neoplastic clones each mingled with nonneoplas-
tic constituents – cells and matrix – to form a com-
plex of multiple microecologies. Moreover, the 
crazy quilt of patterns in a tumor evolves over 
time; the originally diagnosed I

Neop
 often has a dif-

ferent appearance than the recurrence.
What accounts for synchronic and diachronic 

intratumor heterogeneity [16–18]? There are two 
contributions: hereditary (inherited somatic 
mutations) and nonhereditary (phenotypic plas-
ticity). Since the 1970s, I

Neop
’s have been regarded 

as Darwinian evolutionary processes and the 
clinically detected cancer as a collection of gene-
alogically related clones, themselves the product 
of a contingent, historical process [15, 18, 19]. 
Each I

Neop
 is the outcome of a process of 

Darwinian evolution occurring among cell pop-
ulations within their microenvironments. The 
heritable variation is provided by the genetic 
instability of the cancer cell yielding a range of 
phenotypes and their associated microenviron-
ments upon which selection can operate. Navin 
has recently reviewed various models – includ-
ing stem cell variants – of somatic mutation gen-
erated heterogeneity, illustrated in Fig. 6.3 
[16, 18]. The  second reason for tumor hetero-
geneity, phenotypic plasticity, has two origins. 

Fig. 6.2 The uniqueness of the I
Neop

: Circos diagrams; 
molecular-genetic “train wrecks.” Circos plots of the somatic 
rearrangements of 24 different invasive breast cancers make 
clear the molecular-genetic heterogeneity of this group of 
neoplasms. Left: The symbolic conventions of the circos plot 
[6]. Individual chromosomes are depicted on the outer circle 
followed by concentric tracks for point mutation, copy 

number, and rearrangement data relative to mapping 
position in the genome. Arrows indicate examples of the 
various types of somatic mutation present in this cancer 
genome. Right: The Circos plot of twenty four individual 
breast cancers. Note: each Circos diagram is really the super-
position of the many diverse cytogenetic abnormalities of the 
different clones comprising I

Neop
 [9]
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First, there is the  heterogeneity that can be attrib-
uted to phenotypic variations on a single speci-
fied “cell of origin.” This is exemplified for by 
the spectrum of grades within a single phenotype 
observed in the common adult cancer. The sec-
ond source of heterogeneity implicates the devel-
opmental history of the TIC. For example, the 
normal uterine cervix is populated by glandular, 
squamous, and indifferent (or metaplastic) cells. 
The occurrence of confusing mixtures of these 
three phenotypes in an invasive cervical cancer 
can be understood as the TIC inscribing these 
developmental potentials in the clonal pheno-
types of the I

Neop
 it gives rise to. Müllerian neo-

plasia offers a more dramatic example. 
Commonly, surface epithelial neoplasms of the 
ovary exhibit more than one phenotype. When 
this is striking, we call them “mixed.” This 
amounts to the TIC retracing the possible devel-
opmental pathways open to the components of 

the müllerian ducts. Of course, germ cell neo-
plasms exhibit the greatest degree of phenotypic 
plasticity; this was dramatically demonstrated in 
the mouse teratocarcinoma studies by Mintz 
et al. [20]. It is as if the neoplastic cell can, in its 
confusion, take more than one developmental 
pathway; in other words, to follow Yogi Berra’s 
advice: “when you come to a fork in the road, 
take it!”

There is one more layer of microecological 
complexity. There is growing evidence that 
there are important interactions among the dis-
tinct clones that make up an I

Neop
. Here the 

clones play the role of species and the non-
neoplastic cells, the role of the environment 
opening the way to an ecological analysis of 
neoplasia. This topic is reviewed by Marusyk 
and Polyak [17].

There are practical implications of this 
dynamic view of the I

Neop
. The escape of an I

Neop
 

Fig. 6.3  Tumor progression models and lineages. 
Navin and Hicks have illustrated five models of tumor 
progression and their phenotypic consequences [18]. 
Green root nodes represent normal diploid cells, colored 
nodes are different tumor clones. (a) Monoclonal evolu-
tion forms a monogenomic tumor. (b) Polyclonal evolution 

forms a polygenomic tumor. (c) Self-seeding results in  
a tumor with a divergent peripheral subpopulation.  
(d) Mutator phenotype generates a tumor with many 
diverse clones. (e) Cancer stem cell progression results in 
a tumor with a minority of pink cancer stem cells
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from previously effective chemotherapy appears 
largely to have an evolutionary basis. Examples 
include the development of imatinib resistance in 
chronic myelogenous leukemia [21–23] and in 
gastrointestinal stromal tumors [24–26].

In Fig. 6.4 I introduce some symbolism, a 
modification of Nowell’s 1976 diagram that serves 
to keep before us the multilevel complexity – cell, 
tissue, mass – of the I

Neop
: what I will call the 

annotated dendrogram fingerprint (ADF).

Context Dependency

The clinical evolution (clinical phenotype) of a 
particular I

Neop
 is context dependent. For example, 

histomorphologically identical invasive squamous 
carcinomas exhibit very different clinical behav-
iors depending upon their precise location in the 
mouth and oropharynx. Similarly, the clinical pre-
sentation and the operability of a glioma of fixed 
grade depends crucially on anatomic location.

Fig. 6.4 The annotated dendrogram fingerprint (ADF). The 
Nowell’s evolutionary trajectory is represented by the den-
drogram with its root in the tumor initiating cell, the normal 
cell that has undergone malignant transformation. Time is 
represented vertically; an idealized summary of phenotype 
horizontally. Each node in the dendrogram represents a neo-
plastic clone; each node consists of a central multicolored 
rectangle set within a background figure. The rectangle 
symbolizes the multilevel genetic and epigenetic dysfunc-
tion of the constituent cells of the clone; different shaped 
rectangles represent different patterns of cellular dysfunc-
tion. The background figure represents the co-constructed 
microenvironment of that particular clone. The top panel 
depicts a snapshot of the I

Neop
 at a particular time. Here the 

horizontal axis again represents phenotype but now the verti-
cal axis represents the percentage contribution of each clone 
(the nodes) to the composite tumor phenotype, or fingerprint. 
For example, the first seven peaks go into the make-up of the 
patient’s primary tumor; the labeled peaks to metastatic 
deposits in various sites. This is just one possible snapshot; a 
slice across some other time would yield a different finger-
print. Thus, we have a representation of synchronic and dia-
chronic tumor heterogeneity. To summarize, the ADF 
symbolizes the three levels of complexity of the I

Neop
: the 

functional (epi)genetic complexity of the malignant cell by 
the rectangle; the micro-ecological complexity of the malig-
nant tissue by its containing figure; and the evolutionary com-
plexity of the clinically detectable mass by the dendrogram
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The complexity of neoplasms and their context 
dependency reminds us that the implicit reductive 
moves made in oncopathological classifications: 
first, the reduction of the patient to the patient’s 
I

Neop
 second, the reduction of the I

Neop
 to a small set 

of gross, histological, immunological, and molec-
ular-genetic characterizations and, third, the 
 further reduction of these characterizations to a 
vector of categorical, ordered or interval values. 
The unique particularities of each patient are inev-
itably lost in this process. These considerations 
challenge any thoughts of strict, context-free 
 histological, or molecular-genetic determinism. 
There will always be, in the language of the epide-
miologist, confounding factors.

Uniqueness

It should be obvious from this discussion that each 
I

Neop
 is nontrivially unique. The altered normal cell 

from which it arises is as unique as the patient’s 
fingerprints. Superimposed on this baseline indi-
viduality is the uniqueness imposed by the contin-
gencies of the steps leading to the malignant 
transformation of the normal cell to produce a tumor 
initiating cell (e.g., the specific order in which can-
cer pathways are destabilized), the contingent inter-
action of those malignant cells with the patient’s 
unique physiologic microenvironment, the contin-
gency of the evolutionary pathways that constitute 
tumor progression, and finally, the contingencies of 
the tumor’s precise location and time of clinical 
detection. All of these factors guarantee that the 
clinical behavior of groups of similar I

Neop
’s will 

only admit a statistical formulation. The Circos dia-
grams remind us of this uniqueness (see Fig. 6.2).

The I
Neop

 Is a Dynamic Process,  
Not a Static Object

The foregoing discussion forces the conclusion that 
I

Neop
’s are difficult to conceptualize and more use-

fully viewed as dynamic processes rather than static 
objects. It is, on the one hand, a single entity (cer-
tainly in the sense of the single disease of the patient 
who harbors it); on the other hand, it is a com-

plex collection of interacting, evolving,  physically 
distinguishable parts, the constituent clones. What 
are suitable metaphors for the  individual neoplasm? 
One is the “malignant  gestation”; a metaphor that 
emphasizes the maldevelopmental character of the 
process and its continuous spatiotemporal variation. 
Microbiology is the source of another metaphor: the 
viral quasi species as exemplified by hepatitis C and 
HIV [27–30]. Both of these viral infections begin 
with an inoculum having one genetic composition 
but which then rapidly evolves into large numbers of 
derivative “ species” under the selective pressure 
exerted by both the host’s immune response and 
therapy. This metaphor comes closest to capturing 
the truth about the I

Neop
. The  distinguishable clones 

of an I
Neop

 are analogous to the species produced in 
the course of terrestrial organismic evolution. That 
is, each component of an I

Neop
’s fingerprint is analo-

gous to a species. In light of this discussion, we 
anticipate that the static classifications created by 
grouping relevantly similar I

Neop
’s into kinds will be 

a problematic. It reminds us of the skepticism 
expressed by Darwin in his Origins of the Species 
about the reality of static Linnaean species.

Intrinsic Heterogeneity  
of Neoplastic Kinds (K

Neop
’s)

Preliminaries

So far I have sketched out the multilevel com-
plexity of the I

Neop
 and emphasized its uniqueness. 

How do we aggregate individually unique I
Neop

’s 
into groups based on relevant similarities? It 
should be clear at the outset that the uniqueness 
of the I

Neop
’s guarantees the intragroup heteroge-

neity of the classes that comprise any classifica-
tion of I

Neop
’s we can imagine.

Before we address the specifics of this process 
we need to lay some groundwork by setting out some 
preliminary definitions and make some observa-
tions about the classification process in general.

Classification Contrasted with Diagnosis
These two terms are used in inconsistent 
and  confusing ways. In this chapter, I will use 
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 classification to denote either the process or 
the  product of partitioning a particular domain 
(e.g.,  epithelial proliferations of the breast) 
into a set of mutually exclusive and collec-
tively exhaustive kinds. Diagnosis denotes the 
 process of assigning an as yet unexamined case 
to one (or more) of the kinds set out in the 
classification.

Classification Pluralism
It is a commonplace that there are many ways 
to classify objects in Nature depending upon 
one’s interests. Consider the many classifica-
tions of plants: that of the curator of a botanical 
garden, that of the green grocer, the herbalist, 
or the landscape architect. No one botanical 
classification is privileged, they all serve differ-
ent purposes. This homely example prepares us 
for the surprise that there is substantial, often 

 acrimonious and heated, dispute over the 
 scientific term “ species.” There are the phenetic 
species, the  biological species, the ecospecies, 
and the evolutionary species [31]. Each species 
definition answers to the peculiarities of differ-
ent domains (viruses, bacteria, vertebrates) and 
different research concerns (e.g., field identifi-
cation, evolution, ecology) and their differing 
organizing principles. Thus, there is no sense to 
be made of “the one correct classification” 
independent of the research community’s inves-
tigatory concerns.

Geometry of Classification:  
The Phenospace
In the following discussion I will employ some of 
the vocabulary of mathematical-statistical classi-
fication. The ideas are sketched out in the legend 
accompanying Fig. 6.5.

Fig. 6.5 An idealized tumor phenospace. Phenospaces for 
I

Neop
’s are constructed by reducing the objects of study (I

Neop
’s 

in our discussion) to some fixed number of ordered observa-
tions (say, tumor size, extent of necrosis, mitotic index, etc.) 
and then representing each analyzed case as a point in a suit-
ably dimensioned space: a “feature space” or, synonymously, 
a “phenospace.” It will meet our needs for this discussion to 
confine ourselves to two continuous features and use the 
third dimension, the height, to exhibit the number of cases 

taking on a particular pair of values. In general, this process 
yields peaks and valley and sparsely populated or unoccu-
pied regions. Several questions are suggested by this plot. 
The existence of structure invites speculation about underly-
ing generative mechanisms: does the presence of seven peaks 
suggest seven distinguishable generative mechanisms? If 
there are seven, where do the products of one leave off and 
the products of the other begin? That is, are there natural 
borders to these phenotypic clusters?
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Relational Kinds and Structural Kinds
Kinds that occur in nature can be divided into two 
types: structural and relational (sometimes termed 
historical) depending upon whether the defining 
feature is a structural predicate or a relational one. 
That I have a mass of 79.5 kg is a structural prop-
erty; that I am an uncle is a relational one. 
Structural kinds are those whose defining orga-
nizing principle is intrinsic to the objects being 
classified; it is to be found in each member of the 
kind. The paradigmatic structural kinds are atomic 
and molecular species (e.g., elemental gold, ben-
zene, isoleucine); to determine whether two pure 
samples are of the same kind, one has only to 
examine the structure (physico-chemical proper-
ties etc.) of each sample. By contrast, relational 
kinds are those whose definition appeals to a rela-
tionship to something external to the objects being 
classified. Paradigmatic examples of relational 
kinds are biological species. One definition of the 
category species (of many possible definitions) is 
the biological species: to be members of the same 
species is to be a member of a naturally inter-
breeding group. To be a tiger is to have tiger par-
ents. This is a definition that reaches beyond the 
intrinsic properties of the individual under exami-
nation to its relationship to an external object, a 
mother and a father. It is an empirical question 
whether there are structural features of each tiger 
(e.g., features of genomic organization) that pick 
out tigers (and only tigers) from their mimics. So 
far this does not appear to be the case. As I shall 
see, histogenetic K

Neop
’s are relational kinds; what 

binds them into a group is not a shared structural 
“essence” but a shared cell of origin.

Oncopathological Taxonomic Models
I would like to re-frame the creation of onco-
pathological classifications as an exercise in tax-
onomic model building; in particular, two very 
different kinds of models – histogenetic models 
and statistical models. 

Models play a major role in many scientific 
contexts. Examples include the billiard ball 
model of an ideal gas and its various elaborations, 
the Bohr model of the atom, the double helix 
model of DNA, and the general equilibrium 

model of financial markets [32, 33]. There are a 
number of advantages to talking in terms of mod-
els. First, it emphasizes that  models are the con-
structs of the classifier. Second, it shifts the 
discussion from metaphysics (distinction between 
“real entities” and “pseudo-entities”) to consider-
ation of the empirical adequacy of competing 
explanatory models. Finally, discussions of mod-
els allow us to distinguish structurally different 
classes of models used in oncopathology: histo-
genetic and managerial.

Histogenetic Neoplastic Kinds 
(HG-K

Neop
’s)

Histogenetic neoplastic kinds are collections of 
I

Neop
’s presumed to share an origin from a partic-

ular normal cell or population of cells committed 
to a particular line of differentiation that have 
undergone malignant transformation. The plau-
sibility of this theory is supported less by the 
direct observation of this temporal progression 
in any individual case but more by invoking the 
heuristic: “looks like, therefore came from.”

The following discussion provides a way of 
thinking about the formation of histogenetic neo-
plastic kinds (HG-K

Neop
) and has this sequential 

structure: (a) the observations that invite explana-
tion; (b) a proposed model (Gouldian reruns); (c) 
a description of the structure of the groups pre-
dicted by the model; and finally, (d) the problem 
of conceptualizing and describing these groups.

The Observations: The Uninterpreted 
Phenospace of the Domain

First, consider a particular domain’s phenospace, 
say invasive breast carcinoma. Choose 1,000 
invasive breast carcinomas, each from a differ-
ent patient. Characterize each I

Neop
’s fingerprint. 

Plot the fingerprints for each of the 1,000 cases 
in a suitably dimensioned phenospace and struc-
ture emerges. Recall that in the phenospace, 
proximity reflects similarity with respect to the 
features that have been chosen by the investigator. 
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The resulting phenospace is occupied by clus-
ters separated by thinly populated or unpopu-
lated gaps. The phenospace has structure. So far, 
this is all description. How can we account for 
clustering? One guiding principle is: “Where 
there is structure, there is an underlying genera-
tive mechanism”; some mechanism that is 
responsible for the frequent covariation of the 
observed features in short, the clustering. Model 
building begins at this point.

The Model: Gouldian Reruns

Steven J. Gould in his book on the Cambrian 
Explosion, Wonderful Life, in making an argu-
ment about the plausibility of human intelli-
gence arising a second time in the history of the 
planet, invites us to consider evolution run over 
and over again from a common temporal start-
ing point [34]. I want to recruit this powerful 
image as a way to conceptualize HG-K

Neop
’s. 

The discussion in the previous section left us 

with the remarkable image of the I
Neop

 as a 
 process, an evolutionary trajectory resulting in 
the production of numerous genealogically 
related clones, each clone being analogous to 
an individual species. The Gouldian rerun idea 
is simply this: a HG-K

Neop
 is the superposition 

of the ADFs of all I
Neop

 sharing a common gen-
erative mechanism. This common mechanism 
is usually identified with the “cell of origin.” 
Figures 6.6 and 6.7 and the accompanying 
legends elaborate this theme.

The Model’s Consequences: 
Extensionally Indeterminate  
Core-Penumbra-Tierra Incognita 
Structure (ExtnI-CoPeTI)

More generally, this process yields clusters sep-
arated by gaps in a suitably dimensioned pheno-
space. Each cluster has an internal substructure 
consisting of one or more concentrations of typi-
cal (core) cases, a fringe of looser concentrations 

∞   N

N

1
U{       }

N=3 N=3 N=300

Gouldian Re-runs

Smith Jones Stein

lim

b

a

Fig. 6.6 Histogenetic neoplastic kinds: Gouldian reruns. 
Each patient (Smith, Jones, and Stein) harbors an invasive 
breast cancer, each with its unique ADF. Each one would 
fill in patches in a suitably dimensioned breast carcinoma 
phenospace. Each is thought to arise from a normal dif-
ferentiated cell, counterparts of which are present in the 
breasts of all three. Fix that intersubjectively normal phe-
notype and now imagine each individual’s ADF “starting 
off” from a malignant version of that common normal cell 
type. Malignant transformation of that normal cell leads 
to the corresponding tumor initiating cell (TIC). Think of 
all three neoplasms arising from that common root and 

then superimpose the three trajectories. This leads to the 
filling out of our breast cancer phenospace with contribu-
tions from all three I

Neop
’s. Now increase the  number to 

300 and we get something like what is pictured at the 
extreme right. Panel B shows a contour diagram that 
might be produced by this experiment. In more abstract 
terms, we can think of a HG-K

Neop
 arising from a specified 

normal cell type “A” (HG-K
Neop

 [A]) as the set theoretical 
union (what we have been calling a superposition) of a 
large number of ADFs (“n”) and then let n increase indefi-
nitely. The increase in n amounts to gathering more expe-
rience about the range of variation of HG-K

Neop
 [A]
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of atypical cases (penumbra) and cases that fade 
off in a diagnostically problematic way into 
“neighboring” entities (“terra incognita”), for 
short, CoPeTI clusters. Figures 6.8 and 6.9 
illustrate this general concept. There is another 
consequence of the model: since the number of 
possible trajectories produced by a particular 
generative mechanism is, in principle, unlimited, 
we will always encounter new fingerprints. 

Thus, these phenospace clusters have the addi-
tional property of being “open” or, more preci-
sely, extensionally indeterminate; the boundaries 
delimiting a parti- cular K

Neop
 are, according to 

this model, essentially undefined. In summary, 
the Gouldian rerun model predicts relational 
kinds that have an extensionally indeterminate 
CoPeTI structure (or ExtnI-CoPeTI, for short). 
The structure of K

Neop
’s is reminiscent of that of 

Fig. 6.7 The histogenetic taxonomic model schema. 
Making sense of “Gold Standards” involves analyzing a 
little more closely the relationship between the pheno-
space and the taxonomic model we use to make sense of 
the phenospace. Left-hand side: The Phenospace: this sil-
houette represents the observed phenospace (the result of 
studying a large number of cases in the particular domain) 
featuring six more or less ill defined but overlapping 
peaks. The Mechanism space: we decided that there are 
six generating histogenetic mechanisms. These individual 
mechanisms (μ’s) correspond to the postulated mecha-
nisms that lead to the cluster in the phenospace; the pas-
sage, for example, from a normal cell phenotype to the 
K

Neop
; the complex maldevelopmental and evolutionary 

process that produces the crazy quilt of light microscopic 
patterns that comprise the HG-I

Neop
’s. We can represent 

these in another space, the mechanism space. Importantly, 
we never directly observe the mechanisms represented in 
this space; we infer their presence from the structure in the 
observable phenospace. Given this taxonomic model, we 
can then ask, for example, whether an in-between case 
represents an instance of one or another histogenetic 

mechanism instantiated by the peaks on either side of the 
problematic case. Right hand panel: The Surrogate space: 
sometimes we decide on empirical grounds that some 
observable feature can be a stand-in for the, in principle, 
unobservable mechanism. The interposed surrogate space, 
Σ, is populated by the observable stand-ins for the corre-
sponding set of postulated but nonobservable mecha-
nisms. An example would be the SYT-SSX gene fusion 
for synovial sarcoma. Sometimes these are referred to as 
“Gold Standards” but this is misleading. If the require-
ment for a “Gold Standard” feature is that it is both neces-
sary and sufficient for the diagnosis of a particular K

Neop
, 

then the fusion product is not one; the usual claim in the 
case of synovial sarcoma is that 90% of cases show this 
feature. Moreover, currently, the relationship between the 
presence of a surrogate and the generative mechanism is 
completely mysterious; the most that can be said is that 
the “Gold Standard” feature and the mechanism are 
strongly correlated. Surrogates of this sort are more use-
fully regarded as features that are heavily weighted in an 
overall assessment of all the clinicopathological features 
used in diagnosis.
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Fig. 6.8 The CoPeTI group. Biological variability in 
whatever domain tends to produce uni-modal or multi-
modal “bell-shaped” like curves; K

Neop
’s are no exception. 

If, from our phenospace, I extract a peak and take a cross-
section through it and its immediate environment, I usu-
ally obtain something like this figure. Clustered around 
the mean are typical cases (the core) and as  
I move away from the mean I encounter less typical cases 
(the penumbra) and finally move into no-man’s land (the 
terra incognita). For the sake of brevity and for us to keep 
this structure in mind I will use the acronym: CoPeTI

Fig. 6.9 Two representations of a typical patch of a 
domain’s phenospace. The valley formed by four peaks in 
a two dimensional phenospace is shown. On the right is a 
three-dimensional depiction – the frequency of cases is 
indicated on the z-axis. On the left is a depiction of the 
same phenospace but this time each case is represented by 
a point; the density of points corresponds with the fre-

quency of cases in a particular region of the phenospace. 
The histogenetic taxonomic model assumes four mecha-
nism; the colors indicate the theoretical results of Gouldian 
reruns starting off from four types of transformed normal 
cell types. The CoPeTI  naming is employed here: 1 = core 
cases; 2 = penumbral cases; 3 = in-between cases; and 
4 = terra incognita (“there dragons be”)

disease kinds in rheumatology, for example, sys-
temic lupus or rheumatic fever a K

Neop
 is, in this 

sense, a morphologic syndrome.
Phenospace structure, then, is a reflection of a 

variety of factors that more or less constraint the 
population of I

Neop
’s – each one of which is a 

 contingent, unique evolutionary trajectory –– 
originating from a particular TIC. These con-
straints include (1) phenotypic  plasticity, the 
regenerative and developmental potential of the 
TIC, and (2) the contexts (anatomic, microana-
tomic, humoral, etc.) of the I

Neop
. At this point, 

three questions arise: First, how many scientifi-
cally credible mechanisms are suggested by the 
structure? (How many K

Neop
’s are there in the par-

ticular domain?) Second, how are the  projections 
of these  mechanisms into the phenospace to be 
delimited? That is, what are the boundaries 
 separating K

Neop
’s? Third, what attitude should I 
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have toward problem cases viewed from this new 
perspective?

How many distinguishable histogenetic 
mechanism can be supported by our data?
This can be thought of as a model parameter to 
be specified by the investigator in much the 
same way that in cluster analysis one has to 
specify a range of values for the anticipated 
number of clusters to be “discovered” in unsu-
pervised classification. “Lumpers” prefer a low 
number for this parameter; “splitters” prefer a 
higher number.

How, if at all, are the K
Neop

’s to be delimited? To 
grid or not to grid
A grid imposed on a phenospace is the geomet-
ric equivalent of a crisply defined classificatory 
partition – the division of the phenospace into a 
set of high-dimensional volumes that are non-
overlapping mutually exclusive regions that col-
lectively exhaust the  phenospace. The extensional 
indeterminacy of the Gouldian rerun model 
guarantees that any gridding will be problem-
atic. Any partitioning of the phenospace in 
unambiguous, crisp characterizations of the 
observed features (the grid) will fail at a fine 
enough level of partitioning. Indeed, both crisp 
boundaries and necessary and  sufficient condi-
tions for membership are incompatible with 
ExtnI-CoPeTI groups. Further more, there is no 
refinement of a partition – whether using a more 
nuanced treatment of light microscopic features 
or employing thousands of molecular features – 
that will escape this problem. That does not 
mean that the current grid is not sufficient for 
most diagnostic work. But it does suggest a 
 different attitude toward problem cases; prob-
lem cases are symptomatic of this fundamental 
incompatibility.

One approach that avoids gridding treats 
K

Neop
’s as multivariate probability distributions 

with ranges that include all possible values that 
the features can assume in the phenospace. For 
any region of the phenospace, there is a nonzero 
probability that any of the posited generative 
mechanisms (the HG-K

Neop
’s) could take on 

values in that region. Anything is possible for the 

HG-K
Neop

, but some kinds are more probable than 
others. This probabilistic modeling honors the 
ExtnI-CoPeTI structure of K

Neop
’s in a way that 

grids do not. It should be mentioned that the 
machine-learning version of this approach has an 
essentialist cast: the multivariate mean is inter-
preted as the “essence” of the K

Neop
 and the varia-

tion (represented by values of variances and 
covariances that make up the covariance matrix) 
as reflecting random “noise.” Biological reality is 
sacrificed in this model; much of the “noise,” far 
from being random, may well be biologically rel-
evant  signal [35, 36].

How Are Problem Cases  
to be Handled?
At this point, the reader may say: “All of this is 
well and good but the practice of oncopathology 
requires some manageable partition of the phe-
nospace.” The response is, of course, this is true 
and the existing systems perform surprisingly 
well. What our analysis suggests is that grids are 
pragmatic solutions and not to be taken too seri-
ously, theoretically, as reflecting our current 
understanding of K

Neop
’s (Fig. 6.10). So, from the 

Gouldian reruns perspective, problem cases are 
guaranteed and draw attention to the limitations 
of gridding. What to do? From a practical point 
of view, if there is no managerial distinction at 
issue, then forcing a problem case into one cate-
gory or another seems at best, of academic 
importance only, at worst, pointless. If there is a 
managerial gradient involved, then the discus-
sion must shift into a totally different mode: 
decision analytic and, as will be discussed, inde-
terminacy of histogenetic assignment, by no 
means, paralyzes clinical decision making (see 
Chap. 10).

Representing ExtnI-CoPeTI Structure  
in Concepts and Language:

How do should we conceptualize and talk about 
the continuous, multidimensional, spatio-temporal 
variation characteristic of I

Neop
’s on the one hand 

and the ExtnI-CoPeTI groups (K
Neop

’s) into which 
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they cluster? We have recourse to vague concepts 
and vague language. It is important to emphasize 
that vagueness is a property of concepts and 
predicates. The world is not vague; the world is, 
well, what it is [37].

As an illustrative example, let us take synovial 
sarcoma. Our Gouldian rerun model tells us that 
I should expect that this neoplastic kind should 
have an ExtnI-CoPeTI structure. Consider a set 
of instruction for diagnosing the HG-K

Neop
, syn-

ovial sarcoma and separating it from its mimics. 
Many of the phenotypic features that we are 
advised to evaluate are imprecise. We have “syn-
ovial sarcomas are large” instead of providing a 
numeric size range; We have terms like “most” 
(50%?, 95%?) and “cellular.” This vagueness of 
feature specification extends to integer-valued, 
countable features of the I

Neop
. For example, the 

difficulty with providing a mitotic count fre-
quency (say, maximum number of mitotic fig-
ures/ten high power fields) for a uterine smooth 
muscle neoplasm is not in the counting part (sta-
tistical and sampling issues, though there are) but 
in deciding whether something is or is not a 
mitotic figure. In other words, the feature itself is 
an extensionally indeterminant CoPeTI category. 
Not only are individual criterial features vague, 

criteria for membership in synovial sarcoma are 
also vague. How many of these features are 
required? Should some be weighted more heavily 
than others?

What Sort of Concept Is a K
Neop

?

Cognitive psychologists and linguists studying 
concepts have written extensively on classes with 
this structure beginning in the 1970s with 
the work of Eleanor Rosch and George Lakoff. 
Terms used for these groups include “family 
resemblance groups,” “cluster concepts,” “proto-
type groups,” and “polythetic groups [38–43].” 
Common features include a high level of intra-
group hetero geneity; a graded architecture (there 
are better and worse examples in the class); pro-
totypic examples; and, most importantly, an 
absence of a defining set of individually neces-
sary and jointly sufficient (INJS conditions) for 
membership. The last amounts to the assertion 
that the groups have no essences. It became clear 
in the 1970s that most nontechnical concepts and 
their linguistic representation do not have a clas-
sical (i.e., satisfying INJS conditions) structure; 
many have a prototype structure. Traditionally, 

ADF

TIC

INeopfingerprint

Excluded Excluded

N = 1000

“A”

“B”

“C”

Typical A

Typical B

Hybrid case

Novel case

In-between case

“A”
“B”

“C”

PROBLEM CASES

KNeopS: “A”, “B”, “C”

Fig. 6.10 Problem cases. (a) A stylized ADF is simpli-
fied into its associated fingerprint, a snapshot of the I

Neop
’s 

heterogeneity at the moment of biopsy. (b) The relevant 
domain is represented by a silhouette with labels “A,” “B,” 

and “C”; for example, I call things in this region “K
Neop

(A).” 
The silhouette represents the results of plotting 1,000 
I

Neop
’s from this domain. (C) The fingerprints of both typi-

cal cases and problem cases are depicted
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the kinds that occur in nature have been thought 
to have a classical, essentialist structure. This is a 
tradition that began with Aristotle in Hellenistic 
Greece and was taken up wholesale by Linnaeus 
in the 18th C. and informed his structuring of 
biological classification. It is only in the 20th C. 
that the grip of essentialism has been relaxed. It 
is now widely accepted that biological species 
have no ‘essences.’ What about features that are 
said to be “Gold Standard” for a particular 
K

Neop
’s? These are more usefully thought of as 

surrogates for histogenetic mechanisms (see 
Fig. 6.7).

Managerial Neoplastic Kinds 
(M-K

Neop
’s)

If histogenetic classifications have the flavor of 
biological systematics, managerial  classifications 
are more in the spirit of commercial risk analy-
sis, say, fashioning risk categories for credit 
card applicants (good risk, intermediate risk, 
bad risk) using applicant characteristics (age, 
credit history, income, etc.). Managerial classi-
fications are formed by playing off a wide vari-
ety of descriptors (features) against a clinical 
outcome of interest; in machine-learning terms, 
they are exercises in supervised classification 
(see Chap. 7 and 10.) The basic ideas are illus-
trated in Fig. 6.11. Paradigmatic examples are 
grading systems for common adult malignan-
cies; these are managerial classifications that 
 discretize a multivariate continuum into statisti-
cally credible, distinct F

Clin
(t) groups or lotter-

ies (Fig. 6.12). The “benign-malignant” 
dichotomous classification and its expansions 
can be regarded as “extended grading systems” 
(Fig. 6.13).

Managerial classifications are engrafted on 
underlying histogenetic classifications; manage-
rial classifications both inherit the diagnostic 
problems of the underlying histogenetic classifi-
cation and lead to diagnostic difficulties of their 
own. Managerial grey zones are quite different 
and dealing with them involves a change in con-
ceptual register from histogenetic considerations 

to decision-analytic ones. Please see discussion 
in Chap. 7 and 10.

The Human Element: The Classifier/
Diagnostician

The Pathologist and the World  
Co-create Oncopathological Reality:  
The Conceptual Fabric Defined

The true, insightful, and fundamental statement that 
science, as a quintessentially human activity, must 
reflect a surrounding social context does not imply 
either that no accessible external reality exists, or 
that science, as a socially constructed institution, 
cannot achieve progressively more adequate under-
standing of nature’s facts and mechanisms.

Stephen Jay Gould [44]

We co-construct our view of oncopathological real-
ity. I mean this, not is some spooky extreme post-
modernist way but in the noncontroversial sense 
that classifications issue from our attempts concep-
tualize and describe an undifferentiated world, a 
world that doesn’t come presorted into ‘natural 
kinds.’ Construed most broadly, classifications 
embody our attempts to structure a world initially 
experienced, in William James phrase, “as one 
great blooming, buzzing confusion.” We bring 
our  current conceptual scheme and the methodolo-
gies (conceptual fabric) available to us at a particu-
lar time to bear on a particular domain (Table 6.2). 
The parsings (or classifications) of individuals in 
that domain have changed and will continue to 
change as we acquire new experience and our 
conceptual fabric changes. In other words, our clas-
sifications and their constituent kinds, the things we 
count as “real,” change with the times (Table 6.2).

Coarse Grained Taxonomic Instability 
(Macro-Revisions)

Both nonmanagerial and managerial classifica-
tions evolve under the pressure of both additional 
experience and changes in the conceptual fabric. 
In the process, old K

Neop
’s either disappear (or are 

radically transformed) or new ones take their place. 
Theory change is, of course, a standard topic in the 



1116 Principles of Classification and Diagnosis in Anatomic Pathology

M-K_(1) M-K_(2) M-K_(3) M-K_(4) M-K_(5)

BLAND HIGH GRADEMORPHOLOGIC CONTINUUM

L1 L2 L3 L4 L5

PHENOSPACE

LOTTERY
SPACE

Sort of

MANAGERIAL TAXONOMIC MODELING

F
ai

lu
re

 R
at

e
F

ai
lu

re
 R

at
e

F
re

q
u

en
cy

F
re

q
u

en
cy

Fig. 6.11 The basic ideas behind managerial lotteries. 
Upper panel: the phenospace depicting both a continuous 
risk funtion and its discretized version. The x-axis repre-
sents some continuous composite measure of cytological 
atypia and architectural complexity. The y-axis represents 
two features: on the left, the frequency of cases having a 
particular morphologic index value and, on the right, the 
failure rate associated with a given morphologic index 
value. The top half of the panel depicts, in grey, a silhou-
ette of the phenospace against which is plotted a continu-
ous, monotonically increasing risk level. In the bottom 
half panel, the phenospace has been discretized into risk 
categories; the step function represents the average risk 
for each of the newly formed categories. These manage-
rial neoplastic kinds are indicated in the bottom strip. For 
example, managerial K

Neop
 1 or M-K-(1) etc. The lottery 

space (bottom panel) makes explicit the distinct lotteries 
associated with each managerial K

Neop
. The ‘eye’ reminds 

us that we observe the morphology and associate the case 
with a specific lottery. The ‘sort of’ reminds us that our 
observations of the lottery characteristics for any given 
partition evolve over time with the acquisition of more 
clinicopathological experience. This evolution is one of 
the forces (among others) that drives the managerial clas-
sification macro-revisionary cycle (see discussion). Case 
assignment is problematic at the boundaries of categories; 
different assignments yield different predictions. This is 
an artifact of the discretizing procedure; a more realistic 
prediction would be that such a boundary case would have 
a behavior intermediate between the two straddled lotter-
ies. Until recently, it was conventional to employ the 
dichotomous classification – “benign-malignant”; clini-
cally more useful is the refined classification that recog-
nizes additional distinct interpolated between ‘benign’ 
and ‘malignant,’ for example ‘low malignant potential’ 
tumors

philosophy of science; its most famous expounder 
in recent years was Thomas Kuhn [45, 46].

Recall the lymphoma histogenetic classifica-
tion wars that roiled the world of  hemato pathology 
in the 1970s [47]. Discussions surroun ding man-
agerial revisions can be equally energetic. The 
debate over the existence of a “low malignant 
potential tumor” in the ovarian serous  neoplasia 
spectrum is an example. Should the morphologic 

continuum be partitioned into “benign- malignant” 
versus “benign-LMP-malignant [48–52]?”

The dynamics of classification change can be 
represented as two evolutionary processes, one for 
M-classifications (the clinicopathologic spiral) and 
the other for S-classifications (the scientific spiral); 
the two trajectories mutually inform one another as 
they coevolve. Importantly, there is traffic between 
the two sides; some landscape features begin as 
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Fig. 6.12 Grading infiltrating ductal carcinoma of the 
breast – Nottingham Scarff-Bloom-Richardson (NSBR). 
Grading systems are paradigmatic examples of manage-
rial classifications. The NSBR grading of invasive duc-
tal carcinoma (IDC) serves as an example [67, 68]. (a) A 
representation of the IDC phenospace. Given a case of 
IDC one makes three observations: percentage gland 

formation, degree of cytological atypia, and mitotic 
index. Each of these three features can take on one of 
three values (1, 2, or 3). Add up the scores for the case 
being examined (ranges from 3 to 9) and assign the case 
a composite Grade using the scheme illustrated on the 
right. (b) The IDC Lottery: an interpretation of the IDC 
taxonomic model

The Lottery

URN I URN II URN III

b

3 4 5 6 7 8 9

I II III

Ms. Smith’s
breast cancer

Color: Mitotic Index
Central hole: Gland Formation

Shape: Cytological Atypia

“URN II”
“Pick a ball”

“Match the pattern”

“Red is bad”
“Black is good”

“Pick the corresponding
URN” 3 4 5 6 7 8 9

I II III



1136 Principles of Classification and Diagnosis in Anatomic Pathology

Benign

S-LMP MPL
Carcinoma

50% of Serous 35% of Serous

15% of Serous

• Cystic, multicystic
or papillary

• Cystic, multicystic
or papillary

Focal
Proliferation

• Mild to moderate
cellular atypia

DESTRUCTIVE STROMAL 
INVASION

CYTOLOGIC ATYPIA
BEYOND THE PALE

• Mitotic figures findable
(up to 4 mf/10 hpf)

• Complex papillae
with secondary

papillae

• Atypia minimal

• Stratification (>4 cells)
and tufting

• Mitotic figures
infrequent

• Stromal component
usually prominent

• Single layer without
Tufting

LMP with microinvasion
A

m
b

iq
u

o
u

s 
d

if
fe

re
n

ti
at

io
n

U
n

am
b

iq
u

o
u

s 
d

if
fe

re
n

ti
at

io
n

F
R

E
Q

U
E

N
C

Y

WORST AREA RULE

Fig. 6.13 The scheme applied to the ovarian serous neopla-
sia spectrum. In this figure the y-axis serves two purposes: 
the total width, for any fixed value of x, represents frequency; 
location below the x-axis indicate the extent to which serous 

differentiation is easily recognized. For example, the serous 
phenotype becomes increasingly attenuated as one moves 
into the Grade III carcinoma range. S-LMP serous low 
malignant potential neoplasm; MPL micropapillary lesion

S-distinctions and evolve into M-distinction. This 
passage, for example, is the investigative focus for 
researchers validating proffered cancer markers 
(see Chap. 7 for a discussion of validation).

Transmission and Translation  
of a Classification

One session over a multiheaded microscope with 
an expert pathologist reviewing her cases is suffi-
cient to disabuse one of the idea that experts diag-
nose using explicit criteria. Recognition comes 
first, criteria to justify the diagnosis, later. It is 
also clear that substantial nonhistopathologic 

knowledge is recruited in arriving at a diagnosis. 
Bartels sees this as an instance of “sensor fusion 
– the combining of sensory data with data from 
other sources such that the resulting information 
is in some sense better than would be possible 
when these sources are used individually [53].” 
Both of these observations prompt my use of the 
term “classificatory vision” to denote the 
 pathologist’s complex interior sense of “the map 
of the terrain”; the term reminds us that whatever 
makes up the expert’s sense of some oncopatho-
logical domain, it is largely nonlinguistic and 
draws widely on many elements of the conceptual 
fabric. The later informs the way the expert navi-
gates around a slide; chooses which microscopic 
fields to examine, which to ignore; in short, to 
decide what is “signal” and what is “noise.”

Under ideal circumstances, the transmission of 
a classificatory vision from the investigator to a 
potential user involves the back and forth com-
munication of the two over a mutiheaded micro-
scope. It is an exercise in iterative ostensive 
teaching: pointing, naming, and correcting. Even 
under these ideal circumstances, there is an 
ineliminable indeterminacy of transmission. We 

Table 6.2 The oncopathological conceptual fabric

Methodologies available at a particular time
Global theories in the supporting sciences
Domain-specific theories (for example, theories about 
the etiology and pathogenesis of neoplasia)
Domain-specific knowledge accumulated to date
Styles of scientific reasoning (for example, statistical 
reasoning, case-based reasoning [65], taxonomic 
reasoning, and experimental reasoning) [69–71]
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never know, at any stage of this process, whether 
we have “gotten it” or not. Our misunderstandings 
emerge only with time and the joint examination 
of additional cases. Importantly, the original 
investigator’s classificatory vision also changes 
with this new experience. The conversion of this 
“sensory fusion” process into spoken language, 
the translation problem, is itself challenging; sum-
marizing that verbal formulation into a set of writ-
ten instructions is even more so. Published journal 
articles rely on photomicrographs and terse tex-
tual descriptions inevitably employ ambiguous 
language. As I indicated, quantitative features do 
not escape this problem. These are anemic substi-
tutes for the back and forth of a microscope 
session.

Diagnostic decision making aids are largely 
dedicated to facilitating this communicative task. 
They attempt to recapture the originary scene of 
ostensive classification transmission by making 
available extravagant numbers of images and 
modeling the “expert’s” intuitions with rule based 
or probabilistic computer models. This topic is 
expanded upon in Chaps. 7 and 10.

Fine-Grained Taxonomic Instability 
(Micro-Revisions)

I discussed public large-scale revisions above; 
there is another kind of classificatory revision, 
“micro-revisions.” By this I mean the ongoing, 
daily adjustments in the classificatory vision of 
the pathologist, the expert in particular, that is 
occasioned by her confronting a novel case and 
assimilating it to one or another K

Neop
’s by, for 

example, using criteria that go beyond those 
extracted from the literature. If memory serves, 
the next time she sees another case like this one, 
she will make the same diagnosis. In these situ-
ations, the expert is both classifying and diag-
nosing at the same time. The way to understand 
the expert reporting: “I communed privately 
with the case for a long time and decided it was 
K

Neop
(A) rather than K

Neop
(B) or K

Neop
(C)” is as a 

classificatory act. Returning to the map meta-
phor, we can think of this as the ongoing 

adjustment and renegotiation of details of the 
expert’s grid – whether scientific or managerial.

Micro-revisions provide a framework for 
understanding expert disagreement, which is 
notoriously widespread in anatomic pathology. 
Over time, micro-revisionary cycles lead inevita-
bly to the noncongruence of the private maps 
(classificatory visions) of different experts. Their 
maps are usually congruent over “core” cases but 
become increasingly noncongruent as one moves 
progressively away from the “core” through the 
“penumbra” and slides into the “terra incognita.”

Boyd Kinds, an Alternative  
to Essentialism

Here is a puzzle that raises important issues: Is 
the K

Neop
, synovial sarcoma of 1950, the same or 

different from the K
Neop

 synovial sarcoma of 
2010? If not how are they related? Synovial sar-
coma was first described about 90 years ago. The 
extension (the I

Neop
’s included under the term) of 

the K
Neop

 synovial sarcoma has changed over the 
years with, for example, the acceptance of a 
monophasic variant. In the late 1980s, a consis-
tent, specific translocation involving chromo-
somes X and 18 was discovered to be widely 
distributed in synovial sarcomas as then defined 
[54]. The fusion product of this translocation, 
SYT-SSX chimeric RNA, can be detected by 
reverse-transcriptase polymerase chain reaction 
and this procedure is now used in routine 
 diagnostic test. It now has become customary to 
talk of the presence of the fusion product SYT-
SSX as the “Gold Standard” for the diagnosis of 
synovial sarcoma, despite the fact that not all 
“classic” synovial sarcomas exhibit this feature. 
In recent years, the extension of synovial sarcoma 
has been expanded, using the SYT-SSX criterion, 
to include a variety of sarcomas that, on light 
microscopy examination, either possess a distinc-
tive phenotype more characteristic of another 
type of sarcoma or are undifferentiated [55, 56].

The history of synovial sarcoma and, in par-
ticular, after the acceptance of SYT-SSX as the 
“Gold Standard” traces a general pattern. First, 
there is an early impression of distinctive H&E 
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histomorphological similarities justifying a group-
ing; I dub it “K

Neop
(A).” Then, I posit some under-

lying generative mechanism. Next, I refine the 
initial characterization in light of new observations 
or reconceptualization under the pressure of changes 
in theory. Throughout this process, the K

Neop
 (A) 

retains the same name and I have the sense that I am 
approaching asymptotically the “true” K

Neop
(A) 

with each cycle. This is the historical and contingent 
process of classificatory evolution. What happens 
to the K

Neop
(A) during this process? Clearly its 

extension changes. What remains constant? It can-
not be anything like a classical “essence,” (i.e., 
“Gold Standard,” set of INJS conditions) as I have 
seen. These are subtle and difficult issues and space 
only permits hints at a solution.

The traditional conception of “natural kinds” 
(i.e., groupings that occur in nature independent 
of our interest) has involved INJS conditions. It 
turns out that almost none of the categories inves-
tigated in biology, nor in most of the other special 
sciences – such as psychology, meteorology, 
astronomy, economics, or linguistics – involve 
shared intrinsic characteristics that are necessary 
and sufficient for membership [57–59].

The philosopher, Richard Boyd, has proposed 
an alternative understanding of natural kinds that 
does not involve necessary and sufficient mem-
bership conditions; he calls these “homeostatic 
property clusters natural kinds [60–62].” They 
feature Wittgensteinian families of properties 
that tend to be nonaccidentally coinstantiated, in 
that something that possesses some of the proper-
ties in the cluster makes it more likely that it will 
also possess the other properties in the cluster. 
Boyd has argued that biological species, higher 
taxa and many of the categories studied in eco-
nomics and geology, have this character. Thus, 
categories can occur in nature prior to our clas-
sificatory schemes without any intrinsic charac-
teristics or “essences” that all members of the 
category have in common. I think K

Neop
’s with 

their ExtnI-CoPeTI structure are instances of 
Boyd kinds. The model also effectively deals 
with both what has been termed macro-revisions 
and micro-revisions. Chiong provides a medi-
cally oriented summary in the context of defining 
“brain death” [63].

Conclusions: The Mythology of 
Classificatory and Diagnostic 
Pathology (Table 6.3)

We can summarize the arguments of this chapter 
by setting out the major conclusions as a collec-
tion of myths. I have already discussed the myths 
of the homogeneous, static I

Neop
’s and of histo-

pathologic or molecular-genetic determinism.

Naïve Realism

My guess is that I have a folk theory of categoriza-
tion itself. It says that things come in well-defined 
kinds, that the kinds are characterized by shared 
properties, and that there is one right taxonomy of 
the kinds [64].

It is easier to show what is wrong with a 
 scientific theory than with a folk theory. A folk 
theory defines common sense itself. When the folk 
theory and the technical theory converge, it gets 
even tougher to see where that theory gets in the 
way – or even that it is a theory at all [39], p. 33.

Naïve realism in oncopathology takes roughly 
this form: There are the histogenetic neoplastic 
kinds “out there” waiting to be discovered. The 
attuned investigator by careful examination can 
identify these kinds in an unmediated way. The 
oncopathological taxonomist is like the field biolo-
gist venturing forth into the rainforest to identify 
and describe all the species of orchids encountered.

Essentialism

Naive realism is essentialist in that it asserts that 
while the individual neoplasms comprising a 
neoplastic kind show great variation, behind that 
variation there is an essence that is shared by all 
of the members of the kind. This essence amounts 
to a set of necessary and sufficient conditions for 
membership in the kind; I have referred to these 
as criterial features. Furthermore, this “essence” 
can be approximated by the averages of all the 
criterial features of the examined members of the 
group; in telecommunication jargon, the average 
is the “signal”; the variation is the “noise.”
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This metaphysical outlook pervades our onco-
pathological literature; it is our folk theory of clas-
sification and is encouraged by daily contact with 
case material that is easily and nonproblematically 
diagnosed using the vague guidelines available. 
Using any half-way functional classification, the 
ADF of most cases, of course, will be located near 
the center of some CoPeTI group. This pragmatic 
fact about an evolved classification is insufficient to 
warrant a belief in oncopathological essentialism.

Classification Monism

The myth of classification monism suggests that 
in the “Recording Angel’s Book” is inscribed the 
one true classification of neoplasms. Our terres-
trial efforts, over time, gradually converge on this 
true order.

The Role of the Expert

This myth amounts to the belief that the expert, 
examining a problematic case, can see through the 
troublesome variation of the individual neoplasm 
to its essence and, in possession of this insight, 
make the ‘correct’ assignment.

Conclusions

The analysis of clinically vivid defects of metabo-
lism (e.g., alkaptonuria) led, historically, to an 
understanding of normal metabolic pathways.  
Similarly, an analysis of problem cases led us to 
reflections on how classification and diagnosis 
usually proceeds in oncopathology and, ulti-
mately, the sketch of C&D presented in this 
chapter. This perspective has it that these “naïve 

Table 6.3 Some myths of oncopathology

The myth Opposed to the myth

The myth of the homogeneous, static neoplasm The ADF and the histomorphologic crazy quilt; the 
individual neoplasm as a multiplicity of evolving clones

The myth of histological determinism Anatomic context dependency
The myth of molecular-genetic determinism  
(“smallism”, i.e., privileging the causal role of lower 
levels of the organizational pyramid over higher levels)

Levels of organization and complexity; emergent properties 
of integrated systems; context dependency

The myths of naïve realism about K
Neop

’s  

•  Realism (we have unmediated direct access to the 
way the World is structured)

We have no direct access to the ‘real’; our interactions with 
the World are mediated by a ‘conceptual fabric’; we 
co-create oncological reality

•  Essentialism (all members of a K
Neop

’s share a set 
of properties that are both necessary and sufficient 
for membership; i.e., they share an ‘essence.’)

K
Neop

’s possess no essences; K
Neop

’s are ExtnI CoPeTI 
groups; histo-morphologic syndromes

•  Classification monism (there is one correct and 
true way to classify natural individuals into natural 
kinds)

Classification pluralism; the form and structure of a 
classification depends upon the background questions being 
asked. The coexistence of S-classifications and 
M-classifications instantiate this principle in oncopathology
Classificatory macro-revisions

•  Experts in the relevant domain have access to the 
‘true’ diagnosis

The problem of expert disagreement
For the expert when confronting problem cases (in 
possession of ‘complete’ information) the normally 
separate acts of diagnosis and classification collapse into a 
single activity
Pathology experts are the ‘language police’ of the 
oncopathological community

The myth of the disappearance of problem cases in 
the fullness of time

Each I
Neop

 is non-controversially unique
There are fundamental limitations to imposing a static 
essentialist grid onto an evolutionary process. This is true 
whether one is dealing with biological organisms or I

Neop
’s. 

Aristotle meets Darwin
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realist” positions are wrong in just about every 
respect. Noncontroversially, there is nothing more 
real than the individual cancer afflicting a patient.  
The realist stance has it that the neoplastic kind to 
which the individual cancer belongs is as real as 
Ms. M’s cancer.  There are the neoplastic types 
out there to be discovered; decades of accumu-
lated ‘field’ experience has produced the current 
canonical list of the named neoplastic kinds dis-
covered to date.  When talking about them we use 
locutions like: “most cases of X” or “sometimes 
X’s can be confused with Y’s because...” or “it 
can be very difficult to tell an X from a Y” or “X’s 
never have feature a...” Other realist discourse 
includes: “It used to be thought that X was a real 
entity, but now we know it not to be, it is only a 
phenotype” or “We report 59 cases of a previ-
ously unrecognized vulvar soft tissue neoplasm..” 
or “Undifferentiated sarcoma: does it exit?” 
Opposed to naïve realism is the idea that a clas-
sification reflects not only what the world has to 
offer but also the conceptual fabric in which the 
investigator is embedded. In other words, onco-
pathological classifications are a coconstruction 
of investigator and the world. K

Neop
’s do not have 

essences any more than biological species or 
medical genetic disorders have essences. I have 
argued that K

Neop
’s have an ExtnI-CoPeTI struc-

ture; they are open-ended and not defined by any 
set of necessary and sufficient conditions. “Gold 
Standard” for the diagnosis of a K

Neop
 is always 

talk about privileged surrogates. I have suggested 
that Boyd’s perspective is a  promising alternative 
to essentialism. First, it frees us of a conceptual 
structure that has not worked in, for example, bio-
logical systematics. It realistically reflects what 
actually goes on in biological classification by 
accommodating: (1) groups that are faithful to the 
continuous spatial and temporal variation of 
K

Neop
’s; and (2) the dynamics of both public 

macro-revisions and private micro-revisions so 
characteristic of oncopathological classification 
and diagnosis.

Opposed to classification monism is classifi-
cation pluralism; the commonplace that, even in 
biological systematics, we parse a particular 
domain in many different ways depending upon 
our interests. The managerial and nonmanagerial 

classifications instantiate this principle in 
oncopathology. 

Against this background, what is the role of 
the expert pathologist in a particular oncological 
domain? To answer this question we need to 
move beyond the naïve realist view of the expert 
as a trained but neutral observer reading off the 
structure of the world in a theory neutral way. 
This is all wrong. Oncological classification and 
diagnosis is a community activity and the expert 
plays an essential regulatory role in that commu-
nity. Experts determine the correct usage of neo-
plastic kind terms; they are the arbiters of the 
taxonomic boundary disputes I alluded to above. 
Thus, the only Gold Standard is Expert Consensus 
and in the absence of that consensus, the ‘right’ 
answer is undefined. The expert is accomplished 
in many ways, but one of them is not the impos-
sible task of identifying essences. When the 
expert says: “I have never seen an case of ‘A’ that 
had feature ‘x’…” this is not to be construed as a 
claim about his special access to essences; it is to 
be taken as an convoluted expression of his taxo-
nomic conventions. A more realistic claim is that 
the expert has refashioned the ‘boundaries’ of 
the entity (in some principled way, it is hoped) to 
accommodate the problematic case. The expert’s 
classificatory vision has changed; he is both clas-
sifying and diagnosing at the same time.

Eventual Disappearance  
of Problem Cases

Naïve realism encourages the belief that with 
further work problem cases will eventually dis-
appear. The perspective that this analysis pro-
vides, on the contrary, insures the persistence of 
hybrid,  in-between, and unique cases; indeed, at 
a fine enough level of examination, all cases are 
problem cases. We can think of each type of 
problem case as an exaggeration of features cen-
tral to typical I

Neop
’s. Hybrid cases are, taxonomi-

cally speaking, embarrassingly heterogeneous 
either because they have reached back into their 
developmental history or, in their neoplastic 
maldevelopment, have taken all the forks in the 
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road; novel cases are embarrassingly unique; in-
between cases have tapped more shallowly into 
their developmental history in a way that has 
them phenotypically bridge two or more devel-
opmentally related standard trajectories for tis-
sues in that anatomic site. Think of the neoplastic 
counterparts of the uterine cervical cells that 
have both glandular and squamous features. 
There is little hope that the flood of molecular-
genetic data generated by the rapidly proliferat-
ing high-throughput technologies will change 
these facts of diagnostic and classificatory life. 
The central obstacle to this project is summa-
rized by the historian Forrester: “The ideal of 
science as certain knowledge is of course 
Aristotle’s ideal. One version of how Aristotle’s 
vision was finally contested and overthrown 
focuses on Darwinian evolution. The pre-Dar-
winian Aristotelian theory of the natural world is 
founded, it is argued, on the category or species, 
arranged hierarchically in order of generality.  
Darwin’s fundamental break with the Aristotelian 
tradition was to see classes or species as consti-
tuted by populations of individuals which vary 
along an indefinite number of axes. … the claim 
is that it is populations of independently varying 
individuals that constitute the base matter of the 
natural and human worlds. All categories or 
species are artificial, imprecise and ultimately 
misleading attempts to portray in the outmoded 
Aristotelian language of predication [that is, in 
crisp, unambiguous criteria] a fundamental 
dynamic reality which can be represented only 
statistically.” [65]

What Does Our Analysis Mean  
for Evidence-Based Pathology?

EBP, whatever it turns out to be, must address the 
issues raised in this essay: the complexity of 
I

Neop
’s; the ExtnI-CoPeTI structure of K

Neop
’s and 

the creative role of the classifier-diagnostician. 
To the extent that EBP is chiefly concerned with 
managerial distinctions, EBM has much to teach 
us. While there are certainly no essences and 
extensional indeterminacy is a reality, continua 
can be discretized, for managerial purposes, in an 

arbitrary but principled ways. This theme is fur-
ther elaborated in Chaps. 7 and 10 discussing 
validation and decision analysis.
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7

Published oncopathological studies purport to tell 
us not only how the world appears to the investi-
gator but makes the stronger additional claim that 
the world will look the same way to us. What 
guarantees are there that the data presented by the 
investigator justifies his view of the world? The 
term ‘internal validity’ captures this worry.  
Threats to internal validity can be grouped into 
problems related to either chance or bias.  Chance 
issues: did the investigators look at a large enough 
sample to develop an accurate picture of the 
domain they are describing? This is the statisti-
cian’s problem of Type I/II error, study power and 
sample size calculations. Worries of this sort are 
allayed by maximizing the sample size. Another 
question: is their picture of the world more 
nuanced and detailed than their data warrants?  
This is the problem of ‘over-fitting’ and has at its 
heart the ‘curse of dimensionality.’ This problem 
is particularly acute for the high dimensional data 
produced by –omics research. The simple, but 
sometimes unrealistic, cure for this worry is the 
validation of the study’s conclusions using a com-

pletely different set of cases drawn from the rele-
vant domain.  In the absence of such an independent 
sample, there are a number of cross-validation 
techniques that can partially address this problem. 
Bias refers to the systematic erroneous association 
of some characteristic with a group in a way that 
distorts a comparison with another group.  Bias is 
directly addressed through the appropriate design 
of experimental studies and by randomization in 
clinical interventional trials; there are no such 
safeguards in non-experimental observational 
research. Investigator intra-observer and inter-
observer agreement: No two pathologists have (in 
the language of Chap. 6) an identical classifica-
tory vision. Are there important differences among 
the investigators in their agreement on the mor-
phologic evaluations presented in the study?

External validity: What guarantees are there 
that the investigator’s view of the world will be 
ours? The study may pass internal validity tests 
but the vision it provides may have little to do 
with the world as we will perceive it. This is a 
question about generalizability, or ‘external 
validity.’ For example, one may question whether 
valid conclusions drawn from a study of cases 
extracted from the expert pathologist’s files  
have much to do with community pathology 
practice.
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Another problem central to oncopathological 
studies is the communication of the investigator’s 
‘classificatory vision’.  As discussed in Chapter 6, 
surgical pathology C&D is, obviously, a highly 
visual, impressionistic activity and passing from 
the visual to the conceptual and verbal poses 
 challenges not faced by other clinical disciplines.  
Failure to communicate the relevant morphological 
criteria can occur at several levels and may under-
mine the impact of an otherwise valid study.

In this chapter we will survey these topics 
(Table 7.1).  For narrative convenience we depart 
from the strict outline of the table at various 
points. We will draw upon several Stanford gyne-
cologic pathology studies to make these points. 
We do this, not to slight other workers, but 
because these are the problems with which we 
have most hands on experience. We finish with a 
brief overview of the substantial informatics 
problems faced by genomic studies.

The Overall Design of an 
Oncopathological Study

What Is the Goal of the Study?  
Managerial Classification  
or Something Else?

As discussed in Chap. 6, it is important in oncopa-
thology to distinguish between those studies whose 
purpose is to make serious risk/prognostic/predic-
tive (RPP) claims – future clinical course or clinical 
phenotype, F

Clin
(t) for short – and those that do not. 

Histogenetic classifications, an example of a scien-
tific classification and managerial classifications, are 
quite different on a number of counts. Histogenetic 
modeling involves postulating a number of plausible 
mechanism that produce the observed phenotypes of 
the neoplasms in a given domain (see Fig. 6.7 and 
related discussion). For managerial classifications 
the taxonomic modeling exercise now takes the 
form of fashioning statistically credible, distinct lot-
teries by dividing, in a suitable way, a multivariate 
continuum (Figs. 6.12–6.14).

The first step in analyzing a oncopathological 
report is to have a clear idea of the investigator’s 
intent and the type of classification modeling in 
which the authors are engaged. Is the study present-
ing an interesting new neoplastic type or kind 
(K

Neop
) (“stroll through the phenospace”) or per-

haps a new K
Neop

 with some comments on clinical 
outcome but, with no serious managerial claim? 
Or, is the study making a serious managerial 
claim? These usually conclude with something 
like: “It’s essential that you make this distinction 
or patients will be disadvantaged!”

Supervised and Unsupervised 
Classification Models
The managerial/nonmanagerial distinction can be 
sharpened by turning to the machine learning con-
trast between supervised and unsupervised classi-
fication. Supervised learning is the task of inferring 
a classification rule from a “supervising” training 
set. That is, the observed features are partitioned 
into “predictors” (typically, individual gross or 
histomorphologic features) and “outcomes” (some 
aspect of F

Clin
(t)). The training set consists of a 

Table 7.1 Evaluation of an oncopathological study

Overall study design
Managerial claim study?
Scientific claim study?
Unsupervised or supervised classification

Internal validity
Chance

Is sample size adequate?
Is the data overfitted?

Biases
Missing data bias
Short follow-up bias
Referral (selection) bias
Spectrum bias
Confounding factor bias
Verification bias

External validity
Can the results of this study be generalized to other 
cases?

Communicability
Observer agreement among the authors
Communication of classificatory vision to potential 
users

Were the morphologic distinctions described in the 
study communicated successfully?

Relevance to the reader
Are the study results of practical significance to my 
practice?
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set of cases with known outcomes. A supervised 
learning algorithm analyzes the training data and, 
with one eye on the outcome, uses the predictors to 
group cases that concentrate, for example, “good 
actors” and “bad actors”; that is, it produces a clas-
sification rule, almost invariably with some mis-
classification rate. The hope is that the classification 
rule will predict the correct outcome for any col-
lection of unexamined cases test sets in the domain. 
Realization of this hope requires the learning algo-
rithm to accurately  generalize from the training 
data to unseen situations encountered in the test 
set. Again, there is always a misclassification rate, 
and almost always the misclassification rate is 
higher for the test set than for the training set.

In unsupervised classification, on the other 
hand, all observed features are taken as an unpar-
titioned ensemble and a search is undertaken for 
“natural” grouping or clustering in the data. Despite 
its apparent objectivity (‘letting the observations 
speak for themselves’) this is not, by any means, 
a theory-free process. These techniques require 
substantial input from the investigator: among 
other things, the selection of the individuals to be 
studied, the features to be examined (or not), the 
scales used to evaluate those features, statistical 
pre-processing of those measurements, to 
normalize them or not,  a choice of similarity 
metric (e.g., Eulidean, Mahalanobis), a choice of 
clustering techniques, a specification of the num-
ber of clusters the investigator thinks is present in 
the data, a specification of a threshold for form-
ing groups, the kind of intracluster structure one 
is looking for (e.g., Gaussian), etc. Cluster analy-
sis in its various forms is the tool employed in 
unsupervised classification [1–3].

Recasting in these terms, our original question 
about the oncopathological study under examina-
tion, then, is: “Is this study, structurally, some 
version of supervised or unsupervised classifica-
tion and, if supervised, is the supervising feature 
some F

Clin
(t)?”

Exploratory and confirmatory statistics 
and computers
The advent of high-speed computation, made 
exploratory data analysis possible. Exploratory 
data analysis (EDA) is an approach to analyzing 

data for the purpose of suggesting hypotheses 
worth testing. EDA complements the tools of clas-
sical statistics designed to test hypotheses. No lon-
ger were statisticians’ analyses confined to 
hypothesis testing using mathematically tractable 
parametric techniques (e.g., normal distribution 
theory), but they could examine high-dimensional 
data using nonparametric computer intensive tech-
niques. Exploratory data analysis of high dimen-
sional data sets brought with it the need for directly 
visualizing this data in a perspicuous and convenient 
way [4]. Through the use of rotating scatter plots, 
color coding, the use of a variety of symbols, high-
dimensional data could be examined and manipu-
lated. These capabilities are now standard in laptop 
statistical programs like JMP or StatView and plots 
of this sort appear routinely in the -omic literature.

We have employed these techniques in several 
Stanford studies since the 1980s. The graphics 
used in our study of problematic uterine smooth 
muscle neoplasms (Fig. 7.1) and our study of 
serous low malignant potential tumors (Fig. 7.2) 
illustrate this point.

Diagnostic and Predictive Components 
of Oncopathological Studies

Oncopathological observational studies inherit 
all the methodological complications of clinical 
observational studies [5, 6] but have the added 
special problems of reproducibly making and 
communicating histopathological distinctions.

For the purposes of this discussion, we can 
distinguish the predictive components of the study 
(internal and external validity) and the diagnostic 
component (investigator observer agreement and 
the translation and transmission problems pecu-
liar to oncopathological communications).

The Predictive Component: Internal  
and External Validity

Anatomic surgical pathology is a largely regulation-
free discipline; we do our own policing. There 
is no FDA oversight of conventional light micro-
scopic distinctions that are employed routinely in 
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patient care decision-making or, for that matter 
(as the disclaimer on all our surgical pathology 
reports makes explicit), immunohistochemical 
tests. Treatment recommendations are often made 
on the basis of what, in the cancer marker world, 
would be Level 4–5 (Level 1, being the best) evi-
dence. By contrast, prognostic and predictive 
gene expression array (GEA) markers have 
received intense scrutiny. In the service of evi-
dence-based reasoning in pathology, it is useful 
to start thinking of proffered F

Clin
(t) claims within 

the framework of cancer marker studies and clini-
cal prediction rules.

The evidentiary rules for cancer marker studies 
have been extensively discussed in the recent lit-
erature by Hayes and his group and others [7–11]. 
Table 7.2 provides a list designed for GEA mark-
ers. How would these apply to oncopathological 
classification using conventional light microscopic 
features? A variant of breast cancer is reported:  
“A distinctive clinicopathological entity … with a 
particularly good (or bad) prognosis: report of 54 
cases.” This can be framed as a prognostic cancer 
marker claim. Questions to ask: (1) really? – validity 
issues; and (2) am I better off with this marker 
than the  -existing ones? What is the incremental 
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Fig. 7.1 Uterine smooth muscle charts. Taking the two 
plots together, six dimensions of data are depicted; our 
assignments (color coding of regions of the phenospace) 
are a seventh. Graphical displays preserving the covari-
ance structure of the data set and are easier to assimilate 
than entries in a complex table [71]. We employed contour 
lines to make clear important exclusion from this study. In 
the no-necrosis/hyaline-necrosis plot the bottom left contour 

lines remind us of the Mt. Everest of mitotically inactive leio-
myomas not included in the study that serve to put “benign 
metastasizing leiomyoma” in its proper context. In the coag-
ulative tumor cell necrosis plot, the bottom left reminds the 
reader of the large number of acutely infarcted leiomyomas 
not included in the study and the top right contour lines, the 
larger number of diagnostically nonproblematic leiomyo-
sarcomas that were not part of the study group
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F
Clin

(t) insight from this classification over and 
above the  classifications I usually employ? Would 
the usual grading scheme have picked up this 
 difference? These are the basic questions addressed 
in the cancer marker analytic literature.

Clinical prognostic models use a variety of 
patient descriptors to fashion a multivariate clas-
sification rule that assigns the patient to an out-
come category, for example, low, intermediate, 
and high risk. Examples include the Nottingham 
prognostic index to estimate the long-term risk of 
cancer recurrence or death in breast cancer 
patients [12]. The notions of training set/test set, 
overfitting, validation, curse of dimensionality, 
etc. permeate the analytic literature in this area. 
Several brief, accessible introductions to prog-
nostic models have appeared recently [13–18]. 
An introduction to multivariate statistics is pro-
vided by Katz [19, 20].

The histopathologic version of this takes as 
predictors a variety of gross and histological 
 features and plays them off against a specified 
F

Clin
(t). For example, the Stanford study attempting 

to fashion a clinically relevant morphologic 
definition of well-differentiated endometrial 
adenocarcinoma was cast in the format of a prog-
nostic model using myoinvasion as a surrogate 
for clinically relevant disease [21]. All promising 
H&E features were recorded and, with the aid of 
CART feature selection and validation, a subset 
was selected that optimally concentrated myoin-
vasive positive/negative cases. Other examples 
are provided by various multivariate classification 
rules using gross and histological features to 
separate adrenal cortical neoplasms into clinically 
benign and malignant groups [22] and sorting 
thymomas into prognostically relevant histo-
pathological groups [23–26].
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Fig. 7.1 (continued)



126 M. Hendrickson and B. Balzer 

Critical Evaluation of the Validity  
of Oncopathological Studies
The critical evaluation of an oncopathological 
study involves answering five questions: (1) What 
was the role of chance in producing the claimed 
results (issues of sample size and overfitting)? 
(2) Are biases implicated in producing the results 
(e.g., selection bias, spectrum bias, confounding 
factors)? (3) Can the results of this study be 
 generalized to other cases? (4) Were the morpho-
logic distinctions described in the study commu-
nicated successfully? (5) Are the study results of 
practical significance?

Sampling Issue: What Has Been 
Included in the Study? Carving Out the 
Study Group from the Larger Domain

Using the metaphor of the phenospace devel-
oped in Chap. 6, we can think of the investiga-
tor’s study group as being formed by carving a 
(high dimensional) patch out of the pheno-
space. This patch will include cases exhibiting 
features over a certain multivariate range and 
will exclude cases falling outside those ranges. 
Fig. 6.12 of invasive ducal carcinomas conveys 
this image.
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Fig. 7.2 Ovarian serous low malignant potential tumors 
(S-LMPs). In this figure, the abscissa and ordinate serve 
nonnumeric functions: low stage vs. high stage and, 
roughly, “interesting” and “uninteresting case.” All of the 
cases in the study are represented; most of the cases are, 
from the perspective of our study goals, relevant only in 
making clear important denominators. The top part of the 
plot is used to spread out cases of interest: those exhibit-
ing microinvasion, micropapillary features, those that 
transitioned to well-differentiated carcinoma, the  character 

of the implants, etc. These are represented by symbols; 
color codes for clinical outcome. Again, we have 
preserved the covariance structure of the data; for example, 
the covariation of micropapillary features and microinvasion. 
An additional advantage of this sort of representation is 
that the reader can query our database. A glance provides 
the reader with the distribution of our cases and an idea of 
the confidence one can have in statistics relating to specific 
subgroups of cases. A picture is, it turns out, worth more 
than a thousand words [72]
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Evaluation of the phenospace being evaluated 
in the study raises the following general questions: 
What is the spectrum of cases included in the study? 
What did the investigators’ cases look like? What 
features were regarded as criterial? Were some 
features more important than others? What were 
salient but noncriterial features? What is required 
is a multivariate representation that preserves the 
covariance structure of the case data and, in particu-
lar, links the clinical outcome with each case.

Another Sampling Issue: What Was 
Excluded from the Study?
As discussed above, the entity the investigator is 
reporting is embedded in a study is typically only 
part of a larger phenospace. The question of what 
was left out is particularly important when the 
investigators are making a managerial claim. How 
was the cut made along the boundaries delimiting 
“good actors” and “bad actors” within this sample? 
These distinctions are usually found in the differ-
ential diagnosis section in the discussion section of 
the paper. That discussion should go beyond report-
ing the typical features of the contrasted entity; 
rather, it is more helpful to discuss the resolution of 
problem cases at that boundary and how the authors 
resolved them. The uterine smooth muscle scatter 
plot makes these cuts explicit in Fig. 7.1. Venn dia-
grams provide another tool for depicting high-
dimensional data in two dimensions and  seldom 
represent more than three dichotomous variates. 
The British mathematician A. W. F. Edwards 

developed a simple method of generalizing Venn 
diagrams to higher dimensions [27, 28]. Fig. 7.3 
illustrates one use.

Yet Another Sampling Issue:  
Is the Sample Large Enough to Support 
the Study’s Conclusions?
More experience is better than less experience. 
This simple thought elaborated in the hypothesis 
testing framework yields the mathematically 
sophisticated apparatus of sample size calcula-
tions; the number of cases required to detect a 
specified difference between two groups [29–31]. 
The statistical hypothesis model is set out in 
Fig. 7.4. The behavioral psychologist have iden-
tified inattention to the importance of sample size 
as the belief in the “law of small numbers”; that, 
for example, the averages calculated from small 
samples are as good as those derived from large 
samples [32]. The essentialism discussed in 
Chap. 6 appears to ground this belief.  After all, 
says the confirmed essentialist, you don’t need 
many cases to identify the  clinicopathologic 
essence of a particular K

Neop
. Symptomatic of 

small sample size problems are the outcome sta-
tistics of series with small number of cases – rare 
diseases  especially – yield unstable measures of 
clinical outcome; “survival ranges from 20 to 
80%”: translation, “you almost certainly will be 
cured of this disease,” or “you almost certainly 
will die of this disease.” For example, the large 
and conflicting literature about the prognostic 
relevance of heterologous elements in malignant 
mixed tumors of the uterus is based on studies 
with few subjects. Prognoses, from these under-
powered studies, for tumors with various types of 
heterologous elements studies ranged from “very 
bad” to “irrelevant” to “good.” It took a large 
GOG study of clinical stage I cases to begin to 
sort this out [33].

The lesson: if a serious claim is made about dif-
ferences in prognosis between two tumor types, it 
should be against the background of sample size 
calculations. How many cases would need to be 
studied to establish, in a statistically credible way, 
the claimed RPP difference? A related issue is the 
problem of testing multiple hypotheses; this is 
particularly a problem for high-dimensional data.

Table 7.2 Study design

What is the goal of the 
study?

Descriptive (“stroll through 
the phenospace”)?
Correlated feature?
Managerial claim?

Type of data collection Retrospective
Prospective

Sample size Is the sample sufficiently large to 
detect in a statistically credible 
way the difference claimed (or, 
alternatively) not found?

Sampling method Sample of convenience
Stratified sampling
Random sampling

Study material What has been included? 
What is the spectrum of cases?
What has been excluded?
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Is the Level of Detail of the Conclusions 
Unrealistic Given the Sample Size?
Less well appreciated than underpowered studies 
is the problem of overfitting. More information 
about a fixed number of cases may not be better 
when it comes to forecasting a F

Clin
(t). That is, 

the addition of refinements (new features) to a 
 classification rule recorded from a fixed number 
of cases may be unhelpful. Recall the discussion 
of training and test sets above. The problem is 
with “overfitting” the training set; that is, provid-
ing too elaborate a characterization of the study 
group used in training the classification rule. This 
would be fine if the world was exactly like the 

sample, sadly, it is not [34]. This is a serious 
problem for high dimensional biology (HDB) 
(see below) but also a problem for the lower 
dimensional biology of histopathological predic-
tion rules.

The simple (but often unrealistic) remedy for 
overfitting is the validation of the classifier using 
a completely different set of cases. Some protec-
tion against overfitting is provided by cross-
validation. The method involves sequentially 
leaving out parts of the original sample (“split-
sample”) and conducting a classifier; the process 
is repeated until the entire sample has been 
assessed. The results are combined into a final 
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Fig. 7.3 The atypical polypoid adenomyofibroma study: 
differential diagnosis Venn diagram. We used a four vari-
ates Venn diagram to depict the differential diagnosis of 
atypical polypoid adenomyofibroma. In each of the cells 
defined by this partition, we list the differential diagnostic 
possibilities. Four morphologic features are depicted:  
(a) architectural index (top half, high; bottom half, low); (b) 
the presence of a prominent fibromuscular stroma (right 
half of rectangle) or its absence (left half of rectangle); (c) 
the focality of the process (inside dumbbell, focal; outside 

dumbbell, diffuse) manifest in the hysterectomy specimen 
as focality and in a sampling as dimorphism; and (d) the 
presence of squamous or morular differentiation (inside 
central oval) or its absence (outside central oval). The pres-
ence or absence of each of these four features defines 16 
different morphological combinations. The diagnostic 
possibilities that correspond to these patterns are set out in 
the appropriate overlap regions. In summary, this diagram 
both indicates differential diagnostic possibilities and the 
‘carving out’ process that resulted in our study group [73]
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model that is the product of the training step 
[34]. CART (classification and regression tree 
analysis) incorporates cross-validation as it con-
structs an optimal decision tree [35]. We used 
CART in our study of endometrial carcinoma 
[21]. The exploratory tree (constructed using all 
of the data in the training set in all its particular-
ity) was very elaborate and contains dozens of 
nodes; cross-validation typically prunes the tree 
down to three or four nodes.

Effect of Missing Data
Missing data can be fatal to the conclusions of the 
study, or not. Certainly, studies that make serious 
F

Clin
(t) claims and are missing much of the fol-

low-up information are suspect. This also applies 

to important potentially confounding factors that 
would bear on F

Clin
(t): size of tumor, location, 

resectability, etc.

Bias
Bias refers to the systematic erroneous associa-
tion of some characteristic with a group in a 
way that distorts a comparison with another 
group. Ioannidis defines bias as “the combina-
tion of various design, data, analysis, and pre-
sentation factors that tend to produce research 
findings when they should not be produced 
[36].” Vineis defines bias as “results that are the 
consequence of an erroneous study design 
[37].” There is a substantial epidemiology lit-
erature on dozens of forms of bias; most of 
these are not directly relevant to biases in the 
oncopathological literature [38].

Bias is directly addressed through the appro-
priate design of experimental studies and by 
 randomization in clinical interventional trials, but 
there are no such safeguards in nonexperimental 
observational research.

Short Follow-up Bias: This is a particularly 
important source of bias, obviously, for studies of 
neoplasms that have a long clinical course. 
Examples from gynecologic pathology include 
serous borderline surface epithelial neoplasms, 
endometrial stromal neoplasms, and granulosa 
cell tumors. For example, the initial impression 
of granulosa tumors was that they were clinically 
benign, but longer follow-up studies from Britain 
and Scandinavia disabused us of this notion. So, 
short follow-up of such neoplasms yields mis-
leadingly high relapse-free survival estimates.

Referral (Selection) Bias and Spectrum Bias:  
It is a commonplace that university practice dif-
fers substantially from community practice. It 
follows that emptying the consultants’ files at a 
university center will yield a different set of cases 
than a comparable emptying of the community 
pathologist’s files. The bias reflects that fact that 
consultants tend not to get straightforward cases 
(so atypical cases are overrepresented) and 
university oncology units tend to get therapeuti-
cally challenging cases (so bad actors tend to be 
overrepresented)

Neyman-Pearson
Hypothesis Testing

β 1−β

1−β

α

α

1−α

Reject

H True

H False

Accept

Conditional
Probabilities so
have to sum to 1

Usually fix at some specified level
eg. .05 or ,01

Power is a function of the size of the sample

.05

.80

Power

Fig. 7.4 Type I and Type II errors in a 2 × 2 table. The 
hypothesis is that a difference exists between two 
groups. Type I a error amounts to the erroneous con-
clusion that there is a difference between compared 
groups when no difference exists. We can think of it as 
the false discovery rate. Similarly, type II error (b error) 
is the false-negative conclusion that there is no differ-
ence when, in fact, a difference does exist. Power is 
defined as (1−b); the probability of correctly identifying 
a difference. The probabilities of these two kinds of 
error are parameters that are set by the investigator. 
Typical choices are: a = 0.05 and (1−b) = 0.80. While 
neither error can ever entirely be avoided, a simple method 
to decrease their probability is to increase the sample 
size. Interestingly (and controversially), Ioannidis by 
analyzing the logic behind hypothesis testing and the 
usual choices for the size of type I and II errors (contro-
versially) concluded that most published studies pro-
duced false conclusions [36]
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In general, there is an overrepresentation of 
difficult cases and clinically malignant cases. For 
example, the natural history of leiomyosarcoma as 
depicted in the Stanford study is completely atypi-
cal; the number of young women is way out of 
proportion to national age distributions for this dis-
ease. Reason: pathologists send in cases from young 
women for verification. In summary, the spectrum 
of cases reported reflects the accrual practices of 
the institution (either the clinical services or the 
consultation practice of the pathologist) both in 
terms of recruitment into the study and the spec-
trum of clinical outcomes in the study group.

Confounding Factors: We discussed in Chap. 6 the 
myth of histopathologic determinism. Another 
way of thinking about this is in terms of con-
founding factors. One has the impression from 
some of our morphological literature that the only 
phenotypic feature that matters for a patient is the 
histopathologic phenotype of her I

Neop
. The huge 

success of the TNM staging system reminds us of 
the importance of nonhistopathological features in 
determining F

Clin
(t).

Verification Bias: There is a straightforward ques-
tion to be asked of a study: Were the cases all 
diagnosed in the same way? Did the reviewing 
pathologist see all the cases? If immunohis-
tochemistry played a role in case assignment, 
was this performed on all cases?

However, there are deeper issues at play here 
that we can illustrate with the example of 
marker studies. We need to distinguish two dif-
ferent scenarios. First, studies that promote a 
marker for distinguishing two, in principle, 
separable but phenotypically overlapping clus-
ters (say, distinguishing primary from meta-
static mucinous carcinomas of the ovary). There 
is a fact of the matter determined in a method-
ologically independent way; there is, or is not, 
a primary in the place predicted by the marker. 
Here, talk of test characteristics: sensitivity, 
specificity, etc. make sense. The second situa-
tion, concerns markers, claimed to clear up 
some muddled region of a phenospace, for 
example, poorly (or undifferentiated) mesen-
chymal neoplasms of the uterus. Here we find 
ourselves dealing with issues (discussed in 

Chap. 6) of classification revision and theoreti-
cal stipulations, over which the relevant experts 
may or may not agree. Diagnostic test discourse 
is weirdly out of place here.

External Validity

The study may pass internal validity tests, but the 
vision it provides may have little to do with the 
world as we will perceive it. This is a question about 
generalizability, or “external validity.” For example, 
one may question whether valid conclusions drawn 
from a study of cases extracted from the expert 
pathologist’s files have much to do with community 
pathology practice.

Relevance
Assume that the chance and bias hurdles have 
been satisfactorily addressed. We are left with the 
question of the relevance of the study to general 
practice. Would my patient’s tumor have been 
included in this study and do the summary 
 statistics reported in the study apply to my 
patient? Oncopathological studies should, and 
usually do, include relevant nonhistopathological 
features: age, gender, comorbidity, symptoms, 
gross features, details of treatment, etc.

Clinicopathology is a work in progress
Typically, in the course of delineating the feature 
of a K

Neop
 over time, initial studies have had lim-

ited generalizability. In time a fuller picture of the 
K

Neop
’s neighborhood in the phenospace emerges, 

and the morphologic spectrum of the K
Neop

 
becomes clearer. It may be that the clinical 
aggressiveness of a K

Neop
 is overestimated (e.g., 

aggressive angiomyxoma), or the diagnostic sig-
nificance of a particular pattern is overestimated 
(the myxoid pattern for uterine myxoid leiomyo-
sarcoma) by a failure to attend to K

Neop
s in the 

neighborhood. Thus, external validity is incre-
mental; later studies typically review earlier stud-
ies and modify their conclusions accordingly. 
Explorations of the phenospace are always works 
in progress. This is very reminiscent of the decay 
of marker test characteristics over time [7–11].
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Other Diagnostic Issues  
in Oncopathological Studies:  
The Communicative Component

Reproducibility of the assessment of 
features or classifications employed in 
the study

How do we know that the investigators agreed on 
the morphological evaluations detailed in the 
study? Intraobserver and interobserver disagree-
ment is common in daily diagnostic life – the 
great scandal of diagnostic anatomic pathology – 
and well documented in our literature. The assess-
ment of cytological atypia in endometrial 
hyperplasia, an important managerial distinction, 
is a notorious example [39].

Translation and Transmission of the 
Investigator’s Classificatory Vision

Another important question is how effectively did 
the paper communicate the classificatory vision 
of the authors? What compromises my ability to 
imitate the investigators in my  diagnostic work 
when confronted with a case that would fall in the 
domain of the study group? Published journal 
articles rely on photomicrographs and terse tex-
tual descriptions inevitably employing imprecise 
language. Quantitative features do not escape the 
problem of vagueness as discussed in Chap. 6.

Both these concerns have their roots in issues 
discussed in Chap. 6: (1) the extensionally inde-
terminant CoPeTI structure of the classes being 
considered; (2) the inevitable linguistic impreci-
sion that attaches to both the characterization of 
the features used to define these unruly groups 
and the characterization of the groups themselves; 
(3) the observer’s ongoing classificatory, private, 
micro-revisions prompted by the examination of 
problem cases; and (4) the difficulties of translat-
ing and transmitting a classificatory vision.

This last problem lies at the heart of our onco-
pathological enterprise; it is the gorilla sitting in 
the middle of the drawing room; we can put a 
negligee of statistics on it but the gown does not 

conceal the fact that it is a gorilla. The question is 
how  effectively did the study under consideration 
study deal with the gorilla? A diagram of the 
study’s phenospace is one way of partially 
addressing this problem. Gleason pioneered this 
technique with his ubiquitous grading chart and, 
following his example, we employed diagrams to 
convey architectural patterns in our endometrial 
cancer study (Fig. 7.5) [40]. Additional assurances 

High bias

Expected error (100 samples)

Expected error (1,000 samples)

Low bias

Variance

Bias

Dimension of input

P
re

di
ct

iv
e 

cl
as

si
fic

at
io

n 
er

ro
r

Low variance High variance

Fig. 7.5 The bias-variance dilemma. What makes for a 
good classifier? Much has been written about this by 
researchers in the machine-learning and pattern recogni-
tion fields. The performance of a classifier, as measured 
by its misclassification rate, depends on the interrelation-
ship among (1) sample size, (2) the dimensionality of the 
data (how many features are evaluated), and (3) the com-
plexity of the model – how many parameters have to be 
estimated within tolerable error limits. Imagine that we 
have several different, but equally good, training data sets. 
A classification rule is biased for a particular set of train-
ing sets if, when trained on each of these data sets, it is 
systematically  incorrect when predicting the correct out-
come. This, for example, occurs when the classification 
rule is too simple; univariate rules typically have this char-
acter; they “under-fit” the data. A classification rule has 
high variance if it predicts different outcomes when 
trained on different training sets. This occurs when the 
classification rule is too complex; complex multivariate 
rules typically have this character; they “overfit” the data. 
The misclassification rate of a classifier is related to the 
sum of the bias and the variance of the classification rule. 
In the diagram, the expected error curve is the sum of the 
bias cure and the variance curve. Generally, the rule 
designer must negotiate a trade-off between bias and vari-
ance as a function of the dimensionality of the data; thus, 
the error curves have a minimum. Two expected error 
curves are shown: the larger the number of cases the lower 
the expected error. A classifier with low bias must be 
“flexible” so that it can fit the data well. But if the classi-
fier is too flexible, it will fit each training data set differ-
ently, and hence have high variance [3]
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that the translation-transmission problem was 
addressed by the investigators are provided by an 
assessment of the level of agreement among the 
investigators [21].

Sources of Communication Failures

Effective transmission of information can fail at a 
number of levels:
 1. The investigator is not really describing what 

he/she actually does:
Assuming that we have assurances that the 

investigators can reliably make the distinc-
tions they describe, are they really following 
their own rules? Or is the investigator doing 
something else; for example, is he making a 
gestalt assignment and then justifying it with a 
story about explicit criteria? This phenomenon 
is well documented [41].

 2. The descriptions employ insufficiently precise 
language:

Ambiguous language travels with the vague 
predicates and vague categories required to 
conceptualize and verbalize continuously 
varying features and extensionally indetermi-
nant CoPeTI groups. “Confluent growth,” 
“papillary growth”; “large” vs. “small” cells; 
“mitotic figure.” In our study of endometrial 
carcinoma, we spent many hours trying to 
understand what Kurman and Norris, in their 
excellent and thorough study, meant by “con-
fluent growth” and “fibrous stroma” [21, 42].

 3. The descriptions are incomplete:
Common omissions include: unstated crite-

ria or feature-weighting strategies; failure to 
address unanticipated combinations of criterial 
features; and a failure to address the ubiquitous 
problem of tumor heterogenity

 4. The authors have not provided instructions for 
dealing with the expected problem cases in the 
domain they are describing:

What help is provided for problem cases – 
hybrids, in-between cases, and novel cases? As 
Chap. 6 suggests, completely anticipating such 
cases is impossible. That said, typical problem 
cases in the investigator’s experience should be 
presented.

Genomic Studies

Genomics, GEA particularly, currently domi-
nate our literature. Our journals are filled with 
articles promoting expression array patterns as 
cancer markers, as the basis for revising con-
ventional light microscopic classifications of 
neoplasms, as prognostic and predictive markers 
or – more in the basic science literature – as 
ways elucidate cell signaling pathways. The 
mood has been upbeat. In 2005, Ioannidis ironi-
cally summed up the prevailing optimistic per-
spective of GEAs in a 2005 Lancet editorial 
entitled, “Microarrays and molecular research: 
noise discovery?”

The promise of microarrays has been of apocalyp-
tic dimensions. As put forth by one of their inven-
tors, “all human illness can be studied by 
microarray analysis, and the ultimate goal of this 
work is to develop effective treatments or cures for 
every human disease by 2050 [43].” All diseases 
are to be redefined, all human suffering reduced to 
gene-expression profiles. Cancer has been the 
most common early target of this revolution and 
publications in the most prestigious journals have 
heralded the discovery of molecular signatures 
conferring different outcomes and requiring dif-
ferent treatments [44].

This editorial was occasioned by a pessimistic 
“forensic statistics” analysis of several published 
prognostic GEA signatures for a variety of can-
cers in the same issue. These authors concluded:

…the list of genes included in a molecular signa-
ture … depends greatly on the selection of the 
patients in training sets. Five of the seven largest 
published studies addressing cancer prognosis did 
not classify patients better than chance. This result 
suggests that these publications were overoptimis-
tic. [-----] Studies with larger sample sizes are 
needed before gene expression profiling can be 
used in the clinic [45].

In the same vein, Dupuy and Simon reported a 
detailed account of 42 peer-reviewed studies 
 published in 2004. Fifty percent of them  contained 
at least one of the following three basic flaws:

1) in outcome-related gene finding, an unstated, 
unclear, or inadequate control for multiple testing; 
2) in class discovery, a spurious claim of correla-
tion between clusters and clinical outcome, made 
after clustering samples using a selection of out-
come-related differentially expressed genes; or 3) in 
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supervised prediction, a biased estimation of the 
prediction accuracy through an incorrect cross-
validation procedure [46].

These are more than just quibbles; these failures 
fatally compromise the usefulness of such results 
[46]. Why is this not working? What are the 
problems? Some of them – multiple testing and 
validation – are familiar from the discussion 
above. Others are more complicated. First, what is 
not addressed by the majority of GEA studies?

The Biological Perspective

Let us locate these worries within the context that 
was sketched out in Chap. 6. The material for 
most expression array studies is a convenience 
sample – banked tissue of some sort (frozen, par-
affin blocks, etc.) from which mRNA is extracted 
and from which cDNA is prepared. Studies of 
such material do not directly address several 
essential aspects of the I

Neop
.

 1. I
Neop

 heterogeneity and evolution: The sampled 
I

Neop
 is caught in a moment of time, a snapshot; 

the “signal” represents the average of the 
genetically and epigenetically heterogeneous 
cells and populations in the sample. For exam-
ple, in Chap. 6, the Circos plots of “individual” 
breast cancers are really graphical summaries 
of all of the cytogenetic abnormalities of 
individual cells present in the sample.

 2. Context dependency of the neoplastic cell: 
it is a commonplace that cells behave dif-
feren-tly in different micro-environments. 
Deciding whether a gene or the elements of 
a genetic pathway are inappropriately upre-
gulated or downregulated requires knowl-
edge of the context; precisely the thing that 
is lost in the homogenization required for 
GEA studies.

 3. I
Neop

 microenvironment: there is the problem 
of separating the signal from the nonneo-
plastic elements in the sample from the sig-
nal of the neoplastic elements. In recent 
years, microdissection techniques and single 
cell GEA have begun to address this problem 
[47, 48].

 4. I
Neop

 cellular complexity – functional and micro-
anatomic – and the context dependency of cellular 

function. Clarke et al. refer to these issues as 
the “confound of multimodality” (COMM):

problems that are associated with extracting truth 
[read, an empirically adequate model] from com-
plex systems. … COMM refers to the potential that 
the presence of multiple interrelated biological 
processes will obscure the true relationships 
between a gene or gene subset and a specific process 
or outcome, and/or create spurious relationships 
that may appear statistically or intuitively correct 
and yet may be false [3].

Clarke et al. provide a number of illuminating 
examples: the multiple functions of transforming 
growth factor b1 and the transcription factors 
tumor necrosis factor a and estrogen receptor a 
(ERa) [3]. Whether these are up or downregu-
lated depends upon a context, again, precisely 
what is lost in GEA studies.

Methodological Problems

What are the issues peculiar to GEA publications? 
There are four basic problems: (1) The confusion 
between an observational study and an experimen-
tal study; (2) High dimensional biology (HDB) 
and the “small sample scenario”; (3) Fishing 
expeditions and the role of modeling in biology; 
(4) Noisy experimental data.
 1. Observation studies vs. experimental studies: 

One recurrent theme is the failure of many 
genomic researchers to distinguish between 
an observational and experimental design. We 
can frame our discussion in terms of “level-
hopping.” Sotiriou and Pusztai distinguish 
between “top-down” and “bottom-up” studies 
[49]. In the “top-down” approach, gene-
expression data from cohorts of patients with 
known clinical outcomes are compared to 
identify genes that are associated with prog-
nosis without any a priori biologic  assumption. 
In short, the jump is from a molecular profile 
to a F

Clin
(t). Genomic techniques inherit all 

the problems of correlating conventional light 
microscopic features with F

Clin
(t) and another 

substantial set of problems involved in mov-
ing the starting point back to the molecular 
level. Bypassed in this additional trajectory 
are, respectively, molecular motifs, signaling 
pathways, and cell-wide networks. This structure 
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of such a correlative, level-hopping study is 
observational and, the fact that genes are the 
predictors notwithstanding, not experimental. 
In the “bottom-up” approach, gene-expression 
patterns that are associated with a specific bio-
logic phenotype or a deregulated molecular 
pathway are first identified and then subse-
quently correlated with the clinical outcome. 
In the candidate-gene approach, selected 
genes of interest on the basis of existing 
biologic knowledge are combined into a 
multivariate predictive model. Both of these 
designs discipline the study with certain a 
priori modeling assumptions and, as we shall 
see, the results are crucially dependent on the 
truth of those assumptions [49].
Potter describes the consequences of this 

shift from an experimental to an observational 
perspective:

When a cancer sample is compared with normal 
tissue, attributing differences in gene expression to 
differences in disease state is entirely inappropriate 
in the absence of data regarding the age, sex, 
genetic profile, histology and treatment of the per-
son from whom the sample came. This involves, 
not the failure to control confounding, but often the 
failure even to measure any of the other relevant 
exposures. If unaffected tissue from the same 
patient is used as a comparison, there are still the 
problems of the existence of field effects and of 
selection bias [50].

Potter suggests education as the culprit for this 
common misapprehension:

The reason for this failure to distinguish between 
observational and experimental designs might 
be that, although observational scientists are 
trained in experimental methods, the reverse is 
seldom true. Furthermore, making the observa-
tions with new and powerful technology seems 
to induce amnesia as to the original nature of the 
study design. It is as though astronomers were 
to ignore everything they knew both about how 
to classify stars and about sampling methods, 
and instead were to point spectroscopes haphaz-
ardly at stars and note how different and inter-
esting the pattern of spectral absorption lines 
were [50].

This theme is also picked up on by Ransohoff

The culture of laboratory medicine does not appre-
ciate that, when the tools of molecular biology are 
applied to heterogeneous groups of people, it is not 

experimental research anymore but rather is obser-
vational epidemiology, with its own rules of evi-
dence, in which molecular biology simply provides 
a measuring tool [51].

I think there is a deeper issue of ideology involved 
here. Recall my discussion of histological deter-
minism, the unstated background belief that what 
drives prognosis are the histological features of 
the I

Neop
. This, as I discussed, encourages an 

inattention to other known determinants of prog-
nosis. I believe something similar – molecular 
determinism – is responsible for the failure to 
appropriately frame GEA studies as observa-
tional studies vulnerable to all the biases well 
known to epidemiologists.
 2. Mathematical-statistical problems in HDB:

Toto, I’ve a feeling we’re not in Kansas anymore 

– Wizard of Oz

The mathematical-statistical issues involved in 
high-dimensional spaces are formidable. Passing 
from the mathematics of t-tests, chi-squared test 
and linear regression – the conventional, and very 
important, biostatistical topics – to the mathemat-
ics and statistics of high- dimensional spaces is 
like moving from reading a bestselling detective 
novel to tackling James Joyce’s Finnegans Wake. 
Thus, a critical reading of gene expression litera-
ture is challenging, even for the statistician; 
indeed, a cottage industry of “forensic statisti-
cians” has been prompted by the mathematical-
statistical difficulties presented by what has come 
to be known by many workers as “genomic signal 
processing.” [52] The lesson for anatomic pathol-
ogists: the first thing to check on any paper that 
employs genomic techniques is whether a statis-
tician is among the authors.

The “tall, skinny matrix” or “small sample 
scenario” problem: The problems arise because 
of the peculiar topology of high-dimensional 
spaces and the relative paucity of data points in 
those spaces. Clarke et al. summarizes the basic 
problem [3, 53]:

Most univariate and multivariate probability 
theories were derived for data space where N 
(number of samples) > D (number of dimen-
sions). Expression data are usually very different 
(D>>>N). A study of 100 mRNA populations 
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(one from each of 100 tumors) arrayed against 
10,000 genes can be viewed as each of the 100 
tumors existing in 10,000-D space. This data 
structure is the inverse of an epidemiological 
study of 10,000 subjects (samples) for which 
there are data from 100 measurements (dimen-
sions), yet both data sets contain 100 data 
points.

By way of contrast, a widely used rule of thumb 
in the pattern recognition field is to have at least 
ten training samples per feature dimension [54]. 
In microarray studies, this ratio is often closer to 
0.01 samples per dimension [55].

Curse of dimensionality: The performance of a 
statistical model (classifier) depends upon the 
interrelationship of three things: (1) sample size, 
(2) data dimensionality, and (3) model (classifi-
cation rule) complexity. The “curse of dimen-
sionality” refers to the breakdown of optimal 
model fitting using statistical learning tech-
niques in high dimensions. The ability of an 
algorithm to converge to a “true” model degrades 
rapidly as the data dimensionality increases. 
The number of training cases required to main-
tain optimality goes up exponentially with the 
dimensionality (the number of features exam-
ined per case) of the feature space [2, 3, 53, 56]. 
Fig. 7.6 and the accompanying legend have 
more details.

These observations can be reframed in terms 
of the “bias/variance dilemma [54].” Simple 
models may be biased but will have low variance.  
More complex models have greater representa-
tion power (low bias) but overfit to the particular 
training set (high variance). Thus, the large 
 variance associated with using many features 
(including those with modest discrimination 
power) defeats any possible classification benefit 
derived from these features. With severe limits on 
 available samples in microarray studies, complex 
models using high-feature dimensions will 
severely overfit, greatly compromising classifica-
tion performance [53].

Some form of the curse’s reach, manifest as 
overfitting, extends to a wide variety of applica-
tions: classifiers using conventional light 
 microscopic features, multivariate regression 
techniques, and artificial neural networks (ANN).

A related counterintuitive property of high-
dimensional space is the following: the investigator 
is often in the position of finding a data point’s 
nearest neighbor in the feature space. Here is the awk-
ward fact: the distance to a point’s farthest neighbor 
approaches that of its nearest neighbor when the 
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Fig. 7.6 A simple example of the “curse of dimensionality.” 
The x-axis depicts a typical conventional light micro-
scopic (H&E) morphological continuum ranging from 
“core” cases of Blues through in-between cases (shades  
of purple) to “core” cases of Red. In the language of  
Chap. 6 we have two overlapping ExtnI CoPeTI clusters. 
An immunohistochemical test is performed that can result 
in a negative, a positive or an inconclusive, result. The 
possible results are displayed in a 3 × 3 matrix. The size of 
the circles corresponds to the proportion of cases in each 
category. Most “core” cases of Blue are negative; most 
core cases of Red are positive. Some of the light micro-
scopically in-between cases travel with the Blues, some 
with the Reds, and some remain indeterminate. The usual 
diagnostic interpretation is that the IHC test has disam-
biguated the purple region into true Blues and true Reds. 
What about the other cells? Some typical Blue cases are 
positive; some typical Red cases are negative. It is a clas-
sificatory decision to continue to call B/+ cases “B” and 
R/− cases “R”; similar decisions are required for the other 
possibilities. There are 33 possible diagnostic/classifica-
tory decisions to make choices. It is easy to see that with 
the addition of new features, each of which can take on 
three values, the possibilities will go up exponentially 
with the number of features; 3n for n features. It is also 
clear that, if the number of investigated cases remains 
constant, the possible combinations outstrip the number 
of cases. This is another version of the “curse of dimen-
sionality.” Immunohistochemical panels present us with 
this alarming vista
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dimensionality of the space increases to as few 
as 15 [3]. This has implications for case-based 
reasoning (CBR) (see Chap. 10).

Richard Simon’s group has provided many 
accessible introductions to these mathematical-
statistical problems [57–59]. The “curse of 
dimensionality” can be glimpsed using a simple 
example that pathologists confront on a daily 
basis (Fig. 7.7).
 3. Epistemological concerns – is hypothesis-free 

data mining really science at all? Genomics 
and data mining have raised a number of 
deeper issues about what constitutes science. 
These are worries about epistemology, that 
branch of philosophy that, among other 
things, attempts to understand what consti-
tutes the scientific method. A good place to 
begin is with the critique of Sydney Brenner, 
the 2004 Nobel Laureate for, among many 
other things, his C. elegans work. Sydney 
Brenner, with his characteristic talent for get-
ting to the heart of the matter, frames the data 
mining problem in broad mathematical terms, 
as an ill-posed inverse problem. The generic 
forward problem involves positing a model, 
deriving predictions from that model, and 
then comparing predictions with the data. The 
generic inverse problem involves deducing a 
model from the data without any a priori 
assumptions about the model. Data mining 
amounts to an ill-posed (theory-poor) inverse 
problem. His argument is worth quoting in its 
entirety:

I want to show here that this approach is bound to 
fail, because even though the proponents seem to 
be unconscious of it, this claim of systems biology 
is that it can solve the inverse problem of physiol-
ogy by deriving models of how systems work from 
observations of their behavior. It is known that 
inverse problems can only be solved under very 
specific conditions. A good example of an inverse 
problem is the derivation of the structure of a mol-
ecule from the X-ray diffraction pattern of a crys-
tal. This cannot be achieved because information 
has been lost in making the measurements. What is 
measured is the intensity of the reflection, which is 
the square of the amplitude, and since the square of 
a negative number is the same as that of its positive 
counterpart, phase information has been lost. There 
are three ways to deal with this. The obvious way 
is to measure the phase; the question then becomes 

well-posed and can be answered. The other is to try 
all combinations of phases. There are 2n possible 
combinations, where n is the number of reflections; 
this approach might be feasible where n is small 
but is not possible where n is in the hundreds  
or thousands, when we will exceed numbers like 
the total number of elementary particles in the 
Universe. The third method is to inject new a priori 
knowledge; this is what Watson and Crick did to 
find the right model. That a model is correct can be 
shown by solving the forward problem, that is, by 
calculating the diffraction pattern from the molec-
ular structure. The universe of potential models for 
any complex system like the function of a cell has 
very large dimensions and, in the absence of any 
theory of the system, there is no guide to constrain 
the choice of model. In addition, most of the obser-
vations made by systems biologists are static snap-
shots and their measurements are inaccurate; it will 
be impossible to generate nontrivial models of the 
dynamic processes within cells, especially as these 
occur over an enormous range of time scales—
from milliseconds to years. Any nonlinearity in the 
system will guarantee that many models will 
become unstable and will not match the observa-
tions. Thus, as Tarantola [60] has pointed out in a 
perceptive article on inverse problems in geology, 
which every systems biologist should read, the best 
that can be done is to invalidate models (in the 
Popperian sense) by the observations and not use 
the observations to deduce models since that cannot 
be successfully carried out [61].

An engaging expansion of this argument is avail-
able online: Sydney Brenner’s lecture: “Much 
ado about nothing: systems biology and the 
inverse problem [61].”

Brenner is concerned with hypothesis-free data 
exploration. A more detailed argument along 
these same lines has been made by systems biolo-
gist Dougherty and coworkers in a series of publi-
cations (See Dougherty, 2008 for references [62]). 
After an extensive review of the history of the 
scientific method, they conclude that studies that 
depart from the model-data interaction schema 
(i.e., hypothesis-driven research) shouldn’t count 
as science at all. They summarize their dismissal 
of data mining by citing Immanuel Kant’s famous 
dictum: “A concept without a percept [observa-
tion] is empty; a percept without a concept is 
blind.”

So, there are fatal downsides to sifting 
through massive amounts of data in a theory-free 
way. There are also downsides, in this data rich 
environment, of having partial theories. Clarke 



1377 Evaluating Oncopathological Studies

Fig. 7.7 Endometrial cancer chart [40]. Schematic of 
endometrial glandular proliferations with small budding 
glands, macroglands, and exophytic papillae. The lower 
one-half of the chart represents proliferations with very low 
risk for myometrial invasion in the hysterectomy specimen 
(<0.05%) and are designated as “complex endometrial 
hyperplasia” (with or without atypia), whereas the upper 
one-half of the chart represents proliferations with a suf-
ficiently high risk for myometrial invasion in the hysterec-
tomy specimen to warrant diagnosis as “well-differentiated 
endometrial adenocarcinoma.” Proliferations with inter-

mediate degrees of complexity are depicted immediately 
above the solid horizontal line on the lower one-half of 
the chart and are designated as “borderline, cannot exclude 
well-differentiated endometrial adenocarcinoma.” These 
latter lesions have an intermediate risk for myoinvasion 
in the hysterectomy specimen (approximately 5%). For 
example, the circles denote low, intermediate, and high-risk 
exophytic papillary patterns. Similar circles can be drawn 
for the macroglandular and small budding glandular pat-
terns. They are correlated with photomicrographs of cor-
responding cases
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et al. warn us against the self-fulfilling proph-
esy. If you are committed to a model, in HDB 
you can usually confirm it; “seek and ye shall 
find.” The  problem is that what you find may be 
erroneous. “With thousands of measurements and 
the concurrent presence of multiple sub-pheno-
types, intuitively logical but functionally incor-
rect associations may be implied between a 
signal’s (gene or protein) perceived or known 
function in a biological system or phenotype of 
interest [3].”

Finally, at a more technical, statistical level, 
epistemological issues intrude. Mehta et al. cau-
tion that many papers aimed at the HDB commu-
nity describe the development or application of 
statistical techniques whose validity is question-
able, and betray a misunderstanding of the episte-
mological foundations of statistics. For example, 
there is sometimes a confusion of measurement 
uncertainty with biological variation [52].
 4. Noisy data: Noisy data is a major problem for 

HDB. Important biological information may 
have a very low signal, and separating this sig-
nal from measurement noise is highly prob-
lematic. GEA data are typically highly 
correlated: this correlation could either repre-
sent “signal” (true correlations of, for exam-
ple, elements of an activated pathway) or 
measurement “noise” in the data. Indeed, spu-
rious correlations are a property of high-
dimensional, noisy data sets and, obviously, 
are a problem for statistical approaches that 
seek to define a data set solely by its correla-
tion structures. Although data normalization 
can remove spurious correlation (and also, 
unfortunately, real correlations) the results are 
sensitive to the particular technique employed; 
in other words, the same data set can yield dif-
ferent models using different techniques.

The Marker Study Perspective

GEA studies designed to make M-Class distinc-
tion (risk, prognosis, prediction) are properly 
evaluated within the cancer marker frame-
work. There are many excellent surveys of this 
 evaluation process as applied to proffered GEA 

markers and classifiers. Many of these focus on 
the most intensively studied field, breast cancer 
[9, 34, 49, 63–70].

Relevance to Evidence-Based Pathology

In this chapter, we have suggested applying the 
framework of tumor marker studies and prognos-
tic classification rules to histopathologic claims 
of managerial relevance and emphasized the par-
ticular need for this in GEA results.

Evidence-based pathology, at the very least, will 
involve acquiring the conceptual tools to deal with 
the issues discussed in the Genomics section. This 
is a formidable task; remember the forensic statisti-
cians. What anatomic pathologists can provide is a 
measure of morphologic “common sense.”
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For decades research in pathology has occurred 
with little attention paid to the formalities of 
experimental design and issues of sample size 
and statistical power, and it still happens this way. 
Pathology research often begins with an intuition 
or a question arising from cumulative observa-
tions made on tissue specimens, followed by the 
more formal step of collecting exploratory data 
for study and analysis. However, this process is 
now evolving as a result of changes in the research 
environment. In most academic institutions, 
research in pathology is increasingly being con-
trolled by institutional review boards (IRBs) and 
their statisticians. Plans for pathology research 
are now expected to follow known experimental 
designs and include analyses of sample size and 
statistical power. Nevertheless, in spite of the 
foregoing there will always be a role for explor-
atory studies, which require minimal attention to 
the details of formal experimental design. In fact, 
analysis of sample size and statistical power can-
not be done until preliminary exploratory studies 
are completed.

Effect of Sample Size on Testing  
of Hypothesis

Most of us know that studies of few patients do not 
produce statistically significant results. Less intui-
tive are the occasional observations that studies 
with large numbers of patients can yield low p val-
ues on effects that eventually prove of limited 
importance [1]. Consider a hypothetical example. 
Let T symbolize a laboratory test, which is positive 
in 25% of patients. In preliminary observations, 
35% of patients negative for T had the disease, 
D, and 45% of those with positive T had D. The 
change in prevalence of D from 35 to 45% is 
known as the size of the effect, or simply the effect 
size. How many patients are required to demon-
strate that T and D are significantly associated? 
The following plot shows the relationship between 
the p value for a chi-square test of independence 
between T and D vs. the number of study patients.

Figure 8.1 shows that using fewer than 200 
patients yields high p values, that over 400 patients 
produce p values less than 0.05 and that large num-
bers of study patients can yield very low p values 
even when the size of the test effect is modest. 
Scrutiny of this plot leads to two alternative conclu-
sions. First, for the test T any study with less than 
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400 patients is of insufficient size to reach a statisti-
cally significant result, that is, it is “underpowered.” 
Now, alternatively, consider a preliminary study of 
just 100 patients for this test. Clearly, such a study 
should result in a high p value but in doing so will 
tell us that the effect size of T for D is small and 
perhaps too small to be of practical interest.

Statistical Errors Types I and II: 
Definition of Power

In classical statistical analysis, the investigator for-
mulates what is called the null hypothesis. This is 
the hypothesis that there are no significant effects 
between two or more populations of interest and 
that all observed results are due to randomness. In 
this setting, one can make two errors. The first is the 
type I error, which is the rejection of the null hypoth-
esis, when in fact the null hypothesis is true. For a 
given experiment, the probability of making a type I 
error is the same as the p value for the statistical 
test. The second error, a type II, develops when we 
accept the null hypothesis although it is false. The 
probability of a type II error is commonly symbol-
ized as b, and power equals 1 − b. Thus, the lower 
the probability of type II error, the higher is the sta-
tistical power for the study and its statistical test.

Estimating Sample Sizes and Power: 
The General Case

Fortunately, statistical software packages in com-
mon use readily calculate both sample sizes and 
power for most common experimental designs. 
These include S-PLUS (www.spotfire.tibco.
com), SAS (www.sas.com), SPSS (www.spss.
com), and NCSS (www.ncss.com). All one need 
do is to select three key pieces of information: the 
p value one hopes to meet, the power level for the 
test, and the minimal size of the experimental 
effect (Table 8.1).

Common choices for a are 0.05 or 0.01. 
Common choices for b are 0.2 and 0.1. Because 
power equals 1 − b, the choosing 0.2 for b is 
equivalent to a choosing 0.8 for the power (some-
times expressed as 80%). Choice of the minimal 
effect size to be detected depends on the nature of 
the random variables used. For example, in sur-
vival analysis one might want to detect a differ-
ence in survival of as little as 2 months in a 
disease that is rapidly fatal. For other studies, the 
choice of 2 months would be too small to matter. 
Regardless, the choices of a, b, effect size, and 
sample size are made by the investigator and the 
values used by the software to estimate b and the 
power. What follows are several examples for 
common types of studies.

Estimating Sample Sizes and Power: 
Two Binary Random Variables

For this type of study, the motivation is to dis-
cover an association between a binary outcome 
and a binary explanatory variable. A common 
example in pathology is the study of how a spe-
cific diagnosis relates to an immunohistochemi-
cal stain (IHC). The outcome is the diagnosis, 
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Fig. 8.1 Plot of p value obtained from a chi-square test of 
independence vs. the number of patients studied. The 
results come from the binomial model to be discussed in 
subsequent sections. All plots and results in this chapter 
were generated from S-PLUS software or programs writ-
ten in C language by the author using the algorithms listed 
in the chapter and in the references

Table 8.1 Information necessary to calculate sample sizes: 
the general case

a The p value one wants to meet, or 
probability of type I error

b The probability of type II error  
(power is 1 − b )

Effect size The magnitude of result one wants to find
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and the explanatory variable is the IHC result. In 
this situation, the binomial model provides esti-
mates of either sample size or power. The model 
requires one to select values for a and b as well 
as at least two additional variables (Table 8.2).

Finding a value for fp, the fraction of patients 
whose tissue will stain positive, requires prelimi-
nary studies or a search of prior literature. Then 
one must select the size of the effect to be 
detected. For example, if we expect that the fre-
quency of the diagnosis to be 0.25 of patients and 
want to see if a positive IHC stain increases the 
frequency of diagnosis to 0.45, then the effect 
size would be an increase from 0.25 to 0.45.  
If preliminary studies indicated that fp was approx-
imately 0.25, then the binomial model with 
a = 0.05 and b = 0.2 would estimate that the sam-
ple size should be 295 patients. Now suppose that 
for the above study the investigator has just 125 
patients. What would be the power of his study 
be to detect the same effect with a = 0.05? The 
binomial model indicates that the power would 
be 0.4 (in percentages 40%). In other words with 
just 125 patients, the probability of making a type 
II error would be 0.6.

Figure 8.2 summarizes the strong, positive 
relationship between power (expressed as a frac-
tion) and the number of patients studied and was 
designed for the above study and its choices of a, b, 
and effect size.

Estimating Sample Sizes and Power: 
Means of Continuous Random  
Variables

If the random variable of interest is continuous, 
like a clinical chemistry test result, and the  outcome 

variable is binary like the presence of a disease, 
then a common research question is whether the 
mean value of the result differs for those with and 
without the disease. For example, in 2008 Zhang 
et al. published mean values of several biomarkers 
measured in cerebral spinal fluid (CSF) in patients 
with either Alzheimer or Parkinson disease [2]. 
Although the authors’ primary motivation was not 
to test for differences in means of biomarkers 
between these two diseases, their data provide a 
useful example of sample size and power applied 
to chemical tests. As before, one must select val-
ues for a and b. However, for such a study select-
ing the size of the effect implies selecting 
differences in mean values of the biomarkers for 
the two diseases (Table 8.3).

Finally, one must know approximate values for 
the standard deviations of each continuous variable 
to be tested, and this information must come from 

Table 8.2 Information necessary to calculate sample sizes: 
the binomial case

a The p value one wants to meet
b The probability of type II error  

(power is 1 − b )
Effect size The change in frequency of outcome one 

wants to detect
fp The frequency of a positive result for the 

explanatory variable
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Fig. 8.2 Plot of calculated power vs. number of patients 
studied for associating a IHC stain with a diagnosis, when 
a = 0.05 and the size of effect is a change in frequency of 
diagnosis from 0.25 to 0.45

Table 8.3 Information necessary to calculate sample sizes: 
the case for means

a The p value one wants to meet
b The probability of type II error  

(power is 1 − b )
Effect size The change in mean value one wants to 

detect
sd’s The standard deviations of the dependent 

continuous variable for the populations 
studied
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preliminary studies. With these choices made, one 
can then estimate sample sizes. Alternatively, if 
one knows the sample sizes, then the software can 
estimate the power (and b) for detecting the effect.

For example, let us examine the power avail-
able to detect the differences in mean values 
reported by Zhang et al. (Table 8.4). The authors 
had a total of 88 patients, and they found that the 
means for both t amyloid and b42 amyloid were 
significantly different between the two diseases. 
By contrast, they did not find significant differ-
ences in mean values for BDNF, IL-8, b2- 
microglobulin, VDBP, ApoAll, ApoE, ApoAl, and 
haptoglobin. Table 8.4 also shows the power avail-
able for detecting significant differences in means 
for the ten biomarkers. For each of the eight non-
significant biomarkers, the power for detecting 
the observed difference in means was less than 
0.8, also implying that the probability of type II 
errors was relatively high (range from 0.3 to 0.95). 
By contrast, the power for finding significant dif-
ferences in means for t amyloid and b42 amyloid 
between the two diseases was essentially 1.

Estimating Sample Sizes  
for the Logistic Model

The logistic regression model allows us to exam-
ine the relationship between a single, binary  

outcome random variable and one or more 
explanatory random variables. For example, the 
logistic regression model is ideal when we want 
to see if a combination of explanatory variables 
can predict the presence or absence of a disease. 
The binary outcome could alternatively be the 
presence of absence of a response to treatment or 
the presence or absence of failure after treat-
ment. The greatest strength of the logistic model 
comes when there are multiple or continuous 
explanatory variables. In this circumstance of 
multiple explanatory variables, estimating sam-
ple sizes and power for the logistic model 
requires the information listed in Table 8.5.

For example, consider the situation for just 
one continuous, explanatory variable, x1. 
First, some preliminary data are necessary. 
From this data, one calculates the mean, mx1, 
and standard deviation, s1, of x1 as well as the 
overall probability of a positive outcome, Po. 
Po also approximates the conditional proba-
bility of a positive outcome when the x1 vari-
able equals mx1, so that Po can be written as 
P(y = 1 | x1 = mx1). Next, we use either the 
preliminary data to estimate the probability of 
a positive outcome when x1 = mx1 + s1 or we 
select some threshold probability we wish to 
detect. This second probability is the condi-
tional probability P(y = 1 | x1 = mx1 + s1), 
which for simplicity we will symbolize as P1. 

Table 8.4 Example of power calculation for testing differences in mean values of CSF biomarkers in Alzheimer and 
Parkinson diseases

Biomarker
Mean values
Alzheimer Parkinson Power b

t Amyloid (pg/mL) 1,425 387.8 1.0 0

BDNF (pg/mL) 202.3 184 0.7 0.3
IL-8 (pg/mL) 37.4 36.3 0.05 0.95

b42 Amyloid (pg/mL) 371.8 510.6 1.0 0

b2-Microglobulin (mg/mL) 1.4 1.6 0.3 0.7

VDPB (mg/mL) 1.1 1.2 0.1 0.9

ApoAll (mg/mL) 0.9 0.8 0.07 0.93

ApoE (mg/mL) 2.5 2.3 0.1 0.9

ApoAl (mg/mL) 2.3 2.4 0.06 0.94

Haptoglobin (mg/mL) 2.3 3.8 0.2 0.8

BDNF stands for brain-derived neurotrophic factor. IL-8 stands for interleukin 8. b Amyloid stands for amyloid [A] 
b 42. VDPB stands for vitamin D binding protein. Apo stands for apolipoprotein. Sample size was fixed at 48 patients 
in the Alzheimer group and 40 in the Parkinson group, and for this analysis a was fixed at 0.05. Mean values come from 
Table 2 of Zhang et al. [2]
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Finally, we must consider the odds ratio, OR, 
defined as:

 
-

=
-

1 / (1 1)
OR .

Po / (1 Po)

P P
 

If higher levels of x1 increase the chance of 
a positive outcome, then the OR will exceed 1.0. 
If higher levels of x1 decrease the chance of a 
positive outcome, then the OR will be less than 
1.0. Thus, by estimating or selecting a value of 
P1 that we want to detect, we also select an OR. 
With values chosen for a and b as before, then 
one can use the tables published by Hsieh or 
available software packages to estimate the 
sample size [3].

Common sense tells us that if we are trying to 
study uncommon outcomes, then we need larger 
sample sizes. This is true for the logistic model, 
where the value of Po can dramatically affect the 
size of the sample needed to detect a particular 
OR effect. The following figure demonstrates this 
relationship with a plot of sample size vs. the 
value of Po.

Figure 8.3 shows that when a positive outcome 
is uncommon, over 1,000 patients are needed to 
detect an OR of 1.5. By contrast, when the out-
come is as common as 0.2 (i.e., 20% of patients), 
then just 274 patients are needed.

Similarly, the value of the OR to be detected 
dramatically affects the size of the sample. 
Figure 8.4 demonstrates this affect for fixed 
 values of Po = 0.2, a = 0.05, and b = 0.2.

The plot demonstrates that for fixed values of 
Po, a and b, the closer the projected value of OR 

is to 1.0, the larger will be the required sample 
size. By contrast when the projected OR is as 
low as 0.7, just 350 patients are needed, and 
when the OR is as high as 1.5, just 274 patients 
are needed.

If there is more than one x variable, then an 
additional step is necessary and consists of 

Table 8.5 Information necessary to calculate sample sizes: 
the logistic regression model

a The p value one wants to meet
b The probability of type II error  

(power is 1 − b )
Po The baseline probability of positive 

outcome
Effect size The odds ratio one wants to detect
nx The number of explanatory x variables to 

be used
x details Details about the x variables such as 

mean and standard deviations
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Fig. 8.3 Plot of required sample size vs. Po, the underlying 
probability of a positive outcome for a logistic regression 
analysis at a fixed OR of 1.5. The relationship between 
sample size and Po comes from equations given by 
Hosmer and Lemshow and is determined for a single con-
tinuous x variable with a = 0.05 and b = 0.2
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Fig. 8.4 Plot of sample size vs. OR, the odds ratio of a 
positive outcome for an x variable at a value one standard 
deviation above its mean and for a fixed Po of 0.2. The 
relationship between sample size and OR comes from equa-
tions given by Hosmer and Lemshow and is determined for 
a single continuous x variable with a = 0.05 and b = 0.2 
 (values of OR between 0.9 and 1.05 were excluded)
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calculating the multiple correlation coefficient 
for each x and its relation to the others. The 
result is then used to estimate the final sample 
size. Thus, estimating sample sizes and power 
for the logistic model often requires prelimi-
nary data and sophisticated software like the 
PASS package (www.ncss.com). The issues and 
equations involved are summarized by Hosmer 
and Lemeshow [4].

Finally, the number of explanatory variables 
one examines affects the sample size needed for 
the logistic model, and this is also true for the 
Cox survival model. If the number of x variables 
is large and the number of patients with observed 
positive outcomes is small, multivariate logistic 
regression analyses can yield unreliable results 
due to overestimated and underestimated vari-
ances. Logistic models in this situation may 
overfit the data and then not validate well with 
new data. Hosmer and Lemeshow suggest the 
following guidelines [4]. First, let n1 be the 
number of patients with a y = 1 outcome and n0 
be the number with y = 0 outcome. Pick the 
lower of these two and label it nL. Next, let the 
number of x variables be nx. Hosmer and 
Lemeshow suggest that nx and nL should be 
chosen such that:

 +1 /10.nx nL  

In other words, nL should exceed more than 10 
times the number of x variables. This result 
implies that the total sample size should be even 
larger. In the author’s experience, it is most often 
the number of patients with a positive outcome 
that will be smaller and therefore of greatest 
importance for comparing with the number of x 
variables.

Consider an example. Suppose we plan a 
study with five explanatory × variables (nx = 5) 
and suppose that the fraction of patients with 
a positive outcome is 0.2. Then nL must be 
such that

 ´ + =10 (5 1) 60nL  

and the total number of patients needed (n) will 
be at least

 =60 / 0.2 300.n  

Hosmer and Lemeshow also caution that con-
tingency tables of outcome by values of the x 
variables should contain at least ten patients per 
cell. Because current studies of either nucleic 
acid microarrays or serum proteonomics often 
include thousands of x variables and just several 
hundreds of total patients, the above consider-
ations suggest that it is possible such studies may 
not validate well with new patients.

Estimating Sample Sizes for Survival 
Analysis

Estimating sample size and power for survival 
analysis is more complex than for other analyses, 
because the outcome in survival analysis is a 
composite of two random variables: time and sta-
tus at the last time. To understand the process, let 
us consider the survival times of two groups of 
patients, A and B. Groups A and B might be 
defined by the presence or absence of a molecular 
marker or stain. Alternatively, groups A and B 
might be defined by values of a continuous vari-
able x below or above a cutpoint. For this kind of 
study, the information needed to estimate sample 
sizes is given in Table 8.6.

The effect size to be detected is the hazard 
ratio, which in turn relates directly to the change 
in survival one wants to detect. For the two groups 

Table 8.6 Information necessary to calculate sample sizes: 
survival analysis

a The p value one wants to meet
b The probability of type II error  

(power is 1 − b )
PA Proportion of patients in group A
PB Proportion of patients in group B
Td Planned duration in time for the study 

patients
Pd The overall probability of death at Td
Effect size The hazard ratio, hr, one wants to detect
nx The number of explanatory x variables to 

be used
x details Details about the x variables such as 

mean and standard deviations
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of patients, A and B, the ratio of their hazard 
functions would be hr = hA/hB, and the relation-
ship between their survival functions, SA and 
SB, relates to this ratio as follows:

 = (hr)SA SB .  

Now consider the following plot of survival 
probabilities for patient groups A and B 
(Fig. 8.5).

The survival probabilities at 10 years for groups 
A and B are respectively 0.90 and 0.78. Suppose, 
we plan a study with a control group whose sur-
vival is equal to group A and we want to detect a 
drop in survival equivalent to that of group B. The 
proportional hazard model implies that the hazard 
ratio, hr, for group B relative to group A is:

(Here, ln stands for the natural logarithm.) 
Thus, the hr to be detected would be approxi-
mately 2.4. To put this in perspective, Therneau 
and Grambsch suggest that many clinical studies 
are designed to detect much more modest values 
of hr – for example, values ranging from 1.15 to 
2.00. On the other hand, detecting lower hr 
requires more study patients. Having selected 
values for the variables in Table 8.6, we use the 
software to determine sample sizes needed for 
survival studies (see, e.g, Therneau and Grambsch 
and Scheoenfeld).

Consider a specific example. Recently Marotti 
et al. reported the results of estrogen receptor-b 
(ER-b) expression in invasive breast cancer [5]. 
They found that in ER-a positive tumors, the pres-
ence of ER-b implied an improvement in propor-
tion surviving at 30 years from approximately 
0.64–0.74. This difference in survival corresponds 
to a hazard ratio of approximately 0.68. In their 
study, the p value for this result was 0.10, so that 
they concluded that the difference in survival was 
not significant. For this subset of their data, the 
authors had 470 patients with ER-a positive 
tumors. Now consider how many would be required 
to show that the effect of ER-b on survival was 
significant at a p value of 0.05 and with a power of 
0.8? The answer is 222 patients with observed 
times of death. Because most of the study patients 
were living at the last time of observation, the 
authors had fewer than 150 with observed times of 
death. Thus, their study did not have sufficient 
power to detect this small change in survival.
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Fig. 8.5 Plot of survival probability for two simulated 
patient groups, A and B

= = = =hr hB / hA ln(SB) / ln(SA) ln(0.78) / ln(0.90) 2.4.

Issues Relevant to Follicular  
Variant of Papillary Carcinoma  
of the Thyroid

One of the more controversial topics in anatomic 
pathology concerns the definition of the follicular 
variant of papillary carcinoma of the thyroid 
(PTC) [6–10]. This tumor has come to be recog-
nized as a variant of PTC even when encapsu-

lated and when papillary structures are absent. In 
fact, the defining morphological features of PTC 
have come to comprise several nuclear phenom-
ena, about which there is much debate and docu-
mented disagreements. If an encapsulated 
follicular tumor is not a follicular variant of PTC, 
then what would it be? The answer is a follicular 
adenoma. Thus, for encapsulated follicular 
tumors the major  distinction to be made is 
between follicular variant of PTC and follicular 
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adenoma. Clearly, the prognosis for follicular 
adenoma should be excellent. By contrast, there 
are well-documented cases of follicular variant of 
PTC with recurrence and metastases after 
 sufficiently long follow-up. Thus, some experts 
now suggest that to resolve the dilemmas about 
definition of PTC and its distinction from follicu-
lar adenoma what are needed are studies with 
long-term follow-up. Let us consider this issue in 
further detail.

Experts agree that the long-term prognosis 
for most patients with PTC is good. The AJCC 
lists the 5-year survival of stage I PTC as 0.971 
and the 5-year relative survival as 0.998 [11]. 
This implies that the baseline 5-year survival 
for a group without PTC should be approxi-
mately 0.9729. Now let us suppose that the 
5-year survival for an encapsulated follicular 
adenoma should approximate the baseline for 
the population (i.e., 0.9729). Next, let us sup-
pose that the 5-year survival for encapsulated 
PTC should approximate that for stage I PTC 
(i.e., 0.971). How many patients would it take 
to detect a significant difference in survival for 
encapsulated PTC vs. follicular adenoma? If 
the total follow-up were to be 10 years with 
a = 0.05 and b = 0.2, then the answer is approxi-
mately 120,000 patients, or 1,200,000 patient-
years of follow-up. These numbers suggest that 
it will be unlikely that studies of survival in 
these tumors will ever answer the question of 

whether  survival in encapsulated PTC differs 
 significantly from follicular adenoma.
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Meta-analysis or statistical overview is the 
 structured and systematic integration of informa-
tion from different studies of a given problem [1]. 
It refers to the disciplined synthesis of previous 
research findings where the results of multiple 
reports on the effect of an exposure or treatment 
are compared, contrasted, and reanalyzed. When 
the results are discrepant, the purpose of the 
meta-analysis is to investigate reasons for dis-
agreements among the studies. When the results 
are concordant, the goal of an overview is to 
derive, through the application of a number of 
quantitative methods, a measure of the effect of 
the exposure or treatment across the combined 
investigations. This measure is referred to as the 
“average” or “summary” effect of the exposure or 
treatment under study [1–5].

Meta-analysis differs from the traditional nar-
rative reviews of the literature in that: (1) all com-
pleted investigations on the effect of an exposure 
or treatment that meet specific eligibility criteria 

are retrieved and considered for inclusion in the 
overview; (2) the quality of the retrieved studies 
is assessed systematically; (3) the degree of 
agreement among the studies is evaluated – both 
conceptually and based on statistical criteria – 
and the synthesis of the findings proceeds if the 
variation in reported results is sufficiently modest 
to be attributed to chance; and (4) quantitative 
methods are used to calculate the “average” effect 
of the intervention across the available studies, 
and to test that effect for statistical significance 
[1–5]. If a meta-analysis is conducted in accor-
dance with these principles, it can provide the 
reader with “an objective view of the research lit-
erature, unaffected by the sometimes distorting 
lens of individual experience and personal prefer-
ence that can affect a less structured review” [6].

Meta-analysis has two generally accepted 
applications and one controversial use. It can 
serve to integrate the findings of studies which 
report a treatment effect operating in the same 
direction, but varying substantially in size between 
reports. The purpose of the synthesis is to provide 
a more precise estimate of the most likely magni-
tude of the treatment effect, so that a definitive 
randomized controlled trial (RCT) can be 
designed, enrolling as many patients as are needed 

Keywords

Meta-analysis for evaluation of therapies • Statistical methodology for 
medical literature review • Epidemiology of study results • Evidence-
based pathology • Diagnostic test accuracy

E.C. Vamvakas () 
Department of Pathology and Laboratory Medicine, 
Cedars-Sinai Medical Center, 8700 Beverly Blvd.,  
Los Angeles, CA 90048, USA 
e-mail: vamvakase@cshs.org

Meta-Analysis: A Statistical Method 
to Integrate Information Provided 
by Different Studies

9
Eleftherios C. Vamvakas 



150 E.C. Vamvakas

to establish the existence of that effect. 
Alternatively, meta-analysis can be used to 
 investigate reasons for disagreements among 
studies  which report treatment effects operating in 
 opposite directions or differing markedly in size 
when they all point in the same direction. The aim 
of the analysis is to explain discrepancies among 
published results, based on relevant characteris-
tics of the patients who were included in the avail-
able studies, the treatments that were administered, 
or the quality of study design and analysis.

The third, and controversial, application of 
meta-analysis is to integrate the findings of stud-
ies that report a treatment effect operating in the 
same direction, but not attaining statistical sig-
nificance in any study, perhaps because of the 
small sample size and inadequate statistical 
power of each report. Here, the purpose of the 
synthesis is to establish the existence of a treat-
ment effect by combining the patient populations 
enrolled in separate studies. This proposed use of 
statistical overviews makes meta-analysis appear 
as a possible alternative to an RCT undertaken to 
establish the efficacy of a therapeutic interven-
tion. Overviews, however, best serve as a supple-
ment (as opposed to an alternative) to RCTs.

This is because – even when a definitive RCT 
for establishing the efficacy of a therapeutic inter-
vention is, eventually, conducted – its findings may 
not necessarily apply to all patients. Trialists use 
highly restrictive inclusion/exclusion criteria for 
patient enrollment, because they strive to include a 
patient population as homogeneous as possible, to 
make it easier to detect a treatment effect untainted 
by confounding factors. The results of an RCT 
may therefore not apply to patients who do not 
meet the eligibility criteria of the study. Thus, 
RCTs constitute the gold standard for evaluating 
the efficacy of therapeutic interventions, but need 
to be supplemented by meta-analyses in order to 
broaden the applicability of their findings [1–7].

A meta-analysis integrates the findings of sep-
arate studies, which usually differ in many aspects 
of their design. This variation in the design attri-
butes of reports included in a meta-analysis 
results in greater generalizability of the findings 
of a statistical overview, compared to the results 
of an RCT, because – by combining studies with 
disparate design characteristics – a meta-analysis 

permits examination of the effect of an interven-
tion in many different situations. If the treatment 
effect is consistent in all the studies, this 
 consistency favors a true treatment effect, rather 
than one due to chance, or some systematic error, 
or uncontrolled factor that may have compro-
mised the results of all completed investigations.

To appreciate the contribution of meta-analyses 
in the medical literature, it is appropriate to think 
of an overview as an original report consisting of 
two parts: a qualitative component and a quanti-
tative one [1, 6, 7]. According to Jenicek [1], the 
first phase of a statistical overview should be a 
“qualitative” meta-analysis, which must precede 
the “quantitative” phase of the report. An assess-
ment of the quality of all retrieved studies should 
be made, and studies of unacceptable quality 
should be excluded from the overview. In 
Goodman’s opinion, a meta-analysis should 
“raise research and editorial standards, by call-
ing attention to the strengths and weaknesses of 
the body of research in an area” [6]. O’Rourke 
and Detsky assert that the major contribution of 
a meta- analysis lies in the attention that it draws 
to flaws in the design and conduct of previous 
studies [7]. When all published studies are sub-
jected to a detailed review of the methods – with 
a focus on the impact of the methods on the 
validity of the results – inadequacies can be 
identified and their resolution encouraged. 
Recognized shortcomings can be thus avoided in 
future individual research efforts, so that more 
valid results are produced.

For their initially-intended purpose (i.e., for 
the investigation of the effects of therapeutic 
interventions), meta-analyses were limited to 
RTCs [8–10]. The rationale and tools for con-
ducting a meta-analysis were thus developed for 
RCTs, that is, the controlled clinical experi-
ments undertaken to establish that a new treat-
ment achieves a better clinical outcome than 
standard therapy; and which can be presumed to 
be free of the effects of selection bias and con-
founding factors, as well as free of the effect of 
observation bias when they are double-blind 
[11]. Meta-analysis was used in pathology (i.e., 
for the study of diagnostic-test accuracy) several 
years after the method had been widely used in 
clinical medicine.
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Studies of diagnostic-test accuracy conducted 
at different centers often produce estimates of the 
sensitivity and specificity of a test that vary widely. 
Such variation may be due to random sampling 
variation, differences in study quality, differences 
in the characteristics of the test and the enrolled 
patients, and/or differences in the cutoff points 
used to calculate the published estimates of sensi-
tivity and specificity [12–17]. The wide variation 
across studies in the reported accuracy of a labo-
ratory test limits the value of the information pro-
vided by traditional reviews of the literature 
presenting the range of available estimates. What 
is often needed, instead of this range, is insight 
into the reasons for the differences in the reported 
estimates of accuracy, and – if possible – a sum-
mary estimate of the sensitivity and specificity of 
the test based on all available data.

Meta-analysis has thus been used to: (1) pro-
duce valid summary estimates of the diagnostic 
accuracy of laboratory tests; (2) explain the varia-
tion in the results of published reports; and (3) 
improve the quality of the primary studies by 
identifying their methodologic shortcomings. 
However, there are differences between RCTs 
and studies of diagnostic-test accuracy, as well as 
methodologic obstacles to the use of meta-analy-
sis in diagnostic pathology [16], which must be 
carefully addressed by meta-analysts of studies 
of diagnostic-test accuracy.

The purpose of this chapter is to provide prac-
ticing pathologists with the necessary background 
for reading and evaluating published reports of 
meta-analyses of RCTs as well as overviews of 
studies of diagnostic-test accuracy. The first part of 
the chapter describes the applications of meta-
analysis in the domain of RCTs. The second part 
discusses how these same concepts and (appropri-
ately modified) methods can be used to integrate 
results of studies of diagnostic-test accuracy. The 
rationale for quantitative research synthesis is 
 presented and the component parts of a meta- 
analysis are described. A recommended approach 
to the medical interpretation of overviews is then 
presented. All concepts are illustrated using as an 
example the meta-analysis [18] of the RCTs of 
white-blood-cell (WBC) reduction of red-  blood-
cell (RBC) components, by means of prestor-
age or poststorage  filtration, to prevent the 

purportedly deleterious immunomodulatory 
effects of WBC-containing allogeneic blood trans-
fusion (ABT) [19]. Transfusion-related immuno-
modulation may  predispose patients to an increased 
risk of bacterial infection, and perhaps also mortality, 
during or shortly after a hospitalization [20].

The Unit of Observation  
in Meta-Analysis

Meta-analysis is the epidemiology of study results. 
Clinical studies use the individual patient as the 
unit of observation. In contrast, the unit of obser-
vation in meta-analysis is either the adverse effect 
of an exposure or the beneficial effect of an inter-
vention, as calculated from each individual origi-
nal report. For example, published RCTs of the 
deleterious effect of exposure to WBC-containing 
ABT or, alternatively, of the efficacy of the inter-
vention of WBC reduction of RBC components to 
prevent this purported ABT adverse effect, used 
the individual patient as the unit of observation 
[21–34]. On the contrary, the meta-analyses of 
these reports [18, 35, 36] used as the unit of obser-
vation one or more measures of the adverse ABT 
effect as calculated from within each reported 
study. More specifically, the odds ratio (OR) of 
either bacterial infection [21–32] or all-cause 
mortality [21, 23–29, 31, 33, 34] represented the 
clinical effect of the deleterious immunomodula-
tory or pro-inflammatory effects of ABT [19, 20] 
as calculated from within each RCT [21–34].

Each study [21–34] thus contributed to the 
meta-analysis [18] one or more estimates of the 
effect of WBC-containing ABT in increasing  
the risk of either infection or mortality. Figures 9.1 
and 9.2 show the results of these individual RCTs 
[21–34] as calculated from intension-to-treat-
analyses. The OR of bacterial infection or short-
term (up to 3-month posttransfusion) mortality 
(Figs. 9.1 and 9.2, respectively) was calculated 
from each RCT if the authors had reported the 
four counts of a 2 × 2 contingency table 
(Table 9.1). Two RCTs [30, 32] had presented 
only “as-treated” analyses of patients transfused 
with non-WBC-reduced vs. WBC-reduced RBCs, 
vs. subjects randomly allocated preoperatively to 
receive either non-WBC-reduced or WBC-reduced 
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RBCs who had not needed ABT  perioperatively. 
For these two studies, which reported only on 
bacterial infection as an outcome (Fig. 9.1 and 
Table 9.2), the minimal number of infections 
recorded in the third comparison group of patients 
not needing perioperative transfusion was allo-
cated [18] to the two randomization arms to pro-
duce approximate 2 × 2 contingency tables for an 
intention-to-treat analysis. One RCT [23] fol-
lowed-up postrandomization (recording the 
adverse events of infection and/or death) only the 
transfused patients. Figures 9.1 and 9.2 show the 
results of these RCTs [21–34] ranked in the order 
of magnitude of the ABT effect on bacterial 
infection or mortality calculated from within 
each study.

A meta-analysis integrates exposure or 
 intervention (treatment) effects calculated from 
separate studies, such as the deleterious effects of 
WBC-containing ABT shown in Figs. 9.1 and 
9.2. It is important to appreciate that a meta- 
analysis integrates the exposure or treatment 
effects calculated from individual studies, as 
opposed to “pooling” the data on the individual 
patients enrolled in each RCT. Thus, the ABT 
effect from each RCT, as incorporated into the 
analysis of an overview [18, 35, 36], is based 
exclusively on the outcomes of the recipients of 
non-WBC-reduced vs. WBC-reduced ABT 
within each individual study. In Table 9.1, patients 
preoperatively randomized to receive WBC-
containing ABT (in the event that they need peri-
operative transfusion) constitute the treatment 
arm, because – by receiving non-WBC-reduced 
RBCs – they are exposed to the immunomodulatory 

Fig. 9.1 RCTs investigating the association of WBC-
containing ABT with bacterial infection ranked in the 
order of magnitude of the ABT effect that they reported 
[21–32]. For each RCT, the figure shows the OR of bacte-
rial infection in subjects randomized to receive non-WBC-
reduced vs. WBC-reduced allogeneic RBCs or whole 
blood, as calculated from an intention-to-treat analysis 
(Table 9.2). Each OR is surrounded by its 95% CI. If the 
95% CI of the OR includes the null value of 1, the ABT 
effect is not statistically significant (p > 0.05). A deleteri-
ous ABT effect is indicated by an OR > 1, provided that the 
associated 95% CI does not include the null value of 1

Fig. 9.2 RCTs investigating the association of WBC-
containing ABT with short-term (up to 3-month posttrans-
fusion), all-cause mortality ranked in the order of 
magnitude of the ABT effect that they reported [21, 23–
29, 31, 33, 34]. For each RCT, the figure shows the OR of 
mortality in subjects randomized to receive non-WBC-
reduced vs. WBC-reduced allogeneic RBCs, as calculated 
from an intention-to-treat analysis
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or pro-inflammatory effects of allogeneic WBCs 
[19, 20]. Patients preoperatively randomized to 
receive non-WBC-reduced ABT constitute the 
control arm, that is, the unexposed subjects.

Controls from one RCT cannot serve as con-
trols for patients being exposed to allogeneic 
WBCs in another RCT. Such a comparison 
would be invalid, because the various studies 
included in a meta-analysis differ from one 
another in various characteristics of the enrolled 
patients, the exposure(s) received, as well as 
attributes relating to study design and analysis 
(Table 9.2). These differences among the studies 
are often likely to affect the outcome of interest 
(e.g., the odds of infection (Fig. 9.1) or all-cause 
mortality (Fig. 9.2)). Thus, because of multiple 
differences among the available studies, it is 
invalid to compare directly the experience of 
individual patients from one study to that of sub-
jects from another RCT. An overview compares 
the effect of an exposure or intervention in one 
study with the effect of that exposure or inter-
vention in other RCTs.

For example, Table 9.2 lists some of the differ-
ences between the RCTs [21–34] investigating 
the association of WBC-containing ABT with 
bacterial infection or all-cause mortality recorded 
up to 3 months posttransfusion. Among other 

 differences between the studies, these RCTs 
 differed in the RBC product transfused to the 
non-WBC-reduced arm, the RBC product trans-
fused to the WBC-reduced arm, and/or the clini-
cal setting. All but four RCTs, including all RCTs 
published after 1998, transfused to the WBC-
reduced arm allogeneic RBCs filtered before 
storage (Table 9.2). Thus, for patients in the 
WBC-reduced arm, these RCTs abrogated both 
any ABT effects mediated by immunologically-
competent allogeneic mononuclear cells [37–39] 
and any ABT effects mediated by WBC-derived 
soluble mediators that progressively accumulate 
in the supernatant fluid of RBCs during storage 
[40–43]. In contrast, three RCTs published 
between 1992 and 1998 [30–32], as well as one of 
three randomization arms employed in the RCT of 
van de Watering et al. [28], transfused to the WBC-
reduced arm allogeneic RBCs or whole blood 
 filtered after storage. For patients in the WBC-
reduced arm, these RCTs [28, 30–32] prevented 
effects mediated by immunologically-competent 
allogeneic mononuclear cells [37–39], but not 
effects mediated by WBC-derived soluble media-
tors that accumulate during storage [40–43].

Five RCTs [21, 23, 25, 28, 29] were conducted 
in cardiac surgery and five [22, 26, 30–32] in gas-
trointestinal surgery. The ABT effect may be 

Table 9.1 2 × 2 Contingency table counts for the randomized controlled trials investigating the relationship between 
WBC-containing ABT and bacterial infection or short-term (up to 3-month posttransfusion) all-cause mortality

Treatment arm (subjects randomized to 
receive non-WBC-reduced ABT a)

Control arm (subjects randomized 
to receive WBC-reduced ABT a)

Subjects developing infection b a b

Subjects remaining free of infection c c d

+
= =

+
/ ( )

Odds of infection or mortality in treated patients
/ ( )

a a c a

c a c c

+
= =

+
/ ( )

Odds of infection or mortality in controls
/ ( )

b b d b

d b d d

= =
odds of infection or mortality in treated patients /

odds ratio (OR) = 
odds of infection or mortality in controls /

a c ad

b d bc

a = count of patients randomized to receive non-WBC-reduced ABT developing infection b

b = count of patients randomized to receive WBC-reduced ABT developing infection b

c = count of patients randomized to receive non-WBC-reduced ABT not developing infection c

d = count of patients randomized to receive non-WBC-reduced ABT not developing infection c
a In the event that they needed perioperative transfusion
b Or dying within 3 months posttransfusion
c Or surviving up to 3 months posttransfusion (to the completion of each study’s follow-up period)
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enhanced in the setting of cardiac surgery, because 
WBC-derived soluble mediators and/or allogeneic 
mononuclear cells may act as a second inflamma-
tory insult, compounding the diffuse inflamma-
tory response to the extracorporeal circuit and 
predisposing to postoperative complications [44]. 
Alternatively, the ABT effect may be enhanced in 
the “unclean” setting of gastrointestinal surgery. 
Either way, it is possible for a deleterious ABT 
effect to become manifest only in the presence of 
cofactors, such as the special conditions that exist 
in cardiac or gastrointestinal surgery.

In addition, there was great variation among 
the RCTs in the amount of blood transfused and 
the frequency of a diagnosis of postoperative 
infection. As few as 26.7% of randomized sub-
jects needed perioperative transfusion in some 
gastrointestinal surgery studies [26]; in contrast, 
as many as 94.7% of randomized subjects needed 
perioperative transfusion in some cardiac-surgery 
studies [28]. In gastrointestinal surgery, the fre-
quency of postoperative infection ranged from 
8.1% [32] to 33.4% [22]. The differences in the 
proportion of transfused patients reflected patient-
related selection factors (severity of underlying 
illness) as well as setting- and surgeon-related 
selection factors (subjective application of liberal 
or conservative transfusion criteria during an 
operation – when objective laboratory indicators 
of the need for transfusion are unavailable). The 
differences in the frequency of postoperative 
infection reflected differences in the patients’ 
severity of illness and the employed diagnostic 
criteria for infection, differences in the types of 
infections evaluated in each study, and perhaps 
also the effects of observation and/or selection 
bias (since not all RCTs were double-blind and, 
in most cases, the details of the randomization 
procedure[s] were not reported).

Thus, it is most unlikely that all RCTs targeted 
an increase in the risk of postoperative infection 
or all-cause mortality mediated by a deleterious 
ABT effect that was biologically the same in all 
the cases. Instead, these RCTs [21–34] most 
likely targeted effects of non-WBC-reduced ABT 
that differed both in magnitude and/or nature – 
being mediated by either allogeneic mononuclear 
cells [37–39] or WBC-derived soluble mediators 

accumulating during storage [40–43] or both; 
and being compounded (or not) by other cofac-
tors (such as a diffuse inflammatory response to 
the extracorporeal circuit used in cardiac surgery 
[44]). Accordingly, a meta-analysis integrating 
the results of all available studies would not 
establish an effect attributed to a specific biologic 
mediator or mechanism. Stated in other words, 
the medical heterogeneity of the available RCTs 
made it inappropriate to combine the results of all 
available RCTs in a meta-analysis [45].

Assessment of the Eligibility  
of Original Reports for Inclusion  
in a Meta-Analysis

Meta-analysis is based on the assumption that all 
studies evaluating the effect of an exposure or 
intervention are retrieved. Some of these reports 
are then selected for inclusion in the analysis, 
based on eligibility criteria specified in advance. 
Exclusions are initially determined by the medi-
cal scope of the overview. If the medical question 
asked is a general one, broad selection criteria 
may be used; if it is a more specific one, the cri-
teria are stricter. The hypothesis under investiga-
tion must be defined in precise terms, so that the 
selection of studies for analysis can be made in 
an objective and reproducible manner. Additional 
criteria for exclusion may include the date of 
publication (because a study may no longer be 
clinically relevant), the language of publication 
(if reports not published in English cannot be 
properly evaluated), the length of follow-up (if 
this is considered too short for a meaningful 
assessment of the outcome under study), and the 
completeness of the presented information (if the 
four counts of a contingency table (Table 9.1) 
cannot be extracted from an abstract, letter to the 
editor, or other summary report of a study). 
Excluded studies should be listed in the report of 
the meta-analysis, and the reasons for their exclu-
sion should be explicitly stated.

When subjects are randomly allocated preop-
eratively to receive non-WBC-reduced vs. WBC-
reduced ABT in the event that they need 
perioperative transfusion (Table 9.2), patients 
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from either arm of the RCT should have the same 
baseline probability of developing bacterial infec-
tion, of dying within 3 months of the transfusion, 
and of needing perioperative ABT. Provided that the 
number of the enrolled subjects is very large, 
the play of chance will distribute equally between 
the treatment and control arms all prognostic 
 factors for mortality or development of bacterial 
infection other than the receipt of non-WBC-
reduced (as opposed to WBC-reduced) ABT. 
Therefore, in the absence of any intervention 
(such as WBC reduction of the administered 
RBCs), the same proportion of patients from 
either randomization arm should be expected to 
develop infection or die within 3 months of the 
transfusion from any cause. For this reason, any 
difference in the odds of infection or mortality 
between the two randomization arms can be 
ascribed to the receipt of non-WBC-reduced (vs. 
WBC-reduced) ABT.

The intent to investigate the existence of a 
causal relationship is the reason why – when meta-
analyses were initially introduced in  medicine – 
only RCTs used to be eligible for inclusion in an 
overview. When results from observational stud-
ies are also available, the findings of observa-
tional studies are either not considered at all or 
integrated separately from the results of RCTs. 
As it will be discussed later, however, investiga-
tions of diagnostic-test accuracy are, in their vast 
majority, observational studies.

Assessment of the Quality  
of Randomized Controlled Trials 
Included in a Meta-Analysis

The assessment of the quality of studies meeting 
the eligibility criteria for inclusion in a meta-
analysis was listed as a necessary part of any sta-
tistical overview in the early guidelines for 
meta-analysis in clinical research [1, 2, 6–8]. 
Formal instruments for assessing the quality of 
RCTs have been (and continue to be) developed 
[46–50]. Chalmers et al. [46] developed a detailed 
list of items to be used for scoring the quality of 
published RCTs on a scale from 0 to 1. Guidelines 
for evaluating observational studies were initially 

presented by Lichtenstein et al. [51] and Feinstein 
[52] and several more scales followed.

A simple instrument was developed by Jadad 
et al. [53] for use by all readers of RCTs. The 
maximum quality score that can be given to a 
study based on this instrument is 5. Two points 
are given to a report for random assignment of 
subjects to treatment and control groups; 2 points 
are granted for blinding both investigators and 
patients; and 1 point is added if the number of 
patients excluded from the analysis, along with 
the reasons for all dropouts and withdrawals, are 
presented in the report of the RCT. With regard to 
the randomization procedure, 1 point is given if a 
study is designated as “randomized,” but the ran-
domization procedure is not described; 0 point is 
given if the randomization procedure is described, 
but is judged to be inappropriate; and 2 points are 
given if the randomization procedure is described, 
and is appropriate. In regard to the blinding tech-
nique, 1 point is given if a study is designated as 
“double-blind,” but the procedure for blinding 
investigators and patients is not described; 0 point 
is given if the blinding procedure is described, 
but is judged to be inappropriate; and 2 points are 
given if the blinding procedure is described, and 
is appropriate.

Moher et al. [54] used the instrument of Jadad 
et al. [53] to measure the quality of 127 RCTs 
from the medical literature. Few RCTs had 
reported either the method used to generate the 
randomization sequence (15%), or the method 
used to conceal this sequence until the point of 
randomization occurred (14%). RCTs that had 
not adequately described the measures taken to 
conceal the treatment allocations, exaggerated 
the effect of the intervention under study by 
37% (p < 0.01), compared to RCTs that had ade-
quately reported the method(s) used for con-
cealment. Furthermore, RCTs receiving a low 
total quality score (£2) exaggerated the estimate 
of the effect of the intervention by 34%, com-
pared with high-quality trials (>2) (p < 0.001). 
Moher et al. [54] concluded that the pooling of 
the findings of low-quality RCTs results in a 
clinically important and statistically significant 
exaggeration of the efficacy of an intervention 
under study.
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Therefore, after a quality score has been 
assigned to each study that is eligible for inclu-
sion in a meta-analysis, meta-analysts must con-
front the contentious issue whether studies of 
inferior quality are to be included in the calcula-
tion of the “average” treatment effect. The main 
argument for including studies that are not of the 
best quality is that a larger number of studies per-
mits examination of the effect of the intervention 
in more situations. However, this advantage must 
be balanced against the disadvantage of including 
questionable results. There is a general consensus 
that, if studies of poor quality are to be included, 
the differences in quality must be taken into 
account in the analysis [55, 56]. Computational 
methods used in meta-analysis assign weights to 
each study that are proportional to a study’s sam-
ple size [57, 58]. In theory, the quality scores 
could also be incorporated into the weights 
assigned to each report, so that the calculated 
“average” treatment effect can depend more 
heavily on the findings of investigations of supe-
rior quality [55]. Alternatively, the studies could 
be stratified by quality score, so that an “average” 
treatment effect can be calculated separately for 
each stratum of quality. If the effects differ across 
strata, the “average” effect calculated from stud-
ies of superior quality can be considered to be the 
valid one.

Overviews in the health field have sometimes 
adjusted for the quality of the combined studies 
by statistical techniques [59]. Some experts have 
recommended that minimal quality standards be 
set in advance, in the form of criteria for inclu-
sion, and that studies that do not meet them be 
excluded. Others have proposed that only the 
“best” of the available studies be used [60, 61]. 
Quality scores have been criticized, however, as 
being based on the report of a study, which is not 
necessarily an accurate measure of the truth about 
some elements of quality. The standards for 
reporting details of the methods used have become 
more stringent over the last decade [62, 63], and 
studies published more recently tend to attain 
higher quality scores for that reason.

Rationale for Quantitative Research 
Synthesis

An overview compares the effect of an exposure 
or treatment in one study with the effect of that 
exposure or treatment in other studies. A meta-
analysis by the fixed-effects method [57, 58] 
combines a series of 2 × 2 contingency table 
counts (Table 9.1), as though the tables were 
strata of patients enrolled in the same study (and 
stratified according to the level of a confounding 
factor in an epidemiologic investigation or by 
admitting hospital in a multicenter RCT). The 
findings from these individual strata are inte-
grated, according each stratum a weight com-
mensurate with its sample size. An assumption is 
made that there is a uniform or “fixed” treatment 
effect in all of the strata (or in all of the studies 
included in the meta-analysis). Studies are 
thought to have generated different estimates of 
this fixed effect solely because of random sam-
pling variation. The results of a meta-analysis by 
the fixed-effects method are thus valid only if this 
is a reasonable assumption to make.

This assumption cannot be reasonably made if 
the combined studies differ with respect to impor-
tant design attributes (Table 9.2). If current medi-
cal knowledge suggests that the effect of an 
intervention should differ in various situations 
(such as those shown in Table 9.2), it is probably 
unreasonable to assume that the exposure or treat-
ment under study has had the same effect in all the 
reported studies. A meta-analysis by the random-
effects method [66] is advocated for these circum-
stances. The assumption of a random-effects 
analysis is that the effect of the exposure or treat-
ment varies from study to study, being randomly 
positioned about some central value. This value is 
the summary or “average” effect of the exposure 
or treatment across the combined studies.

In a fixed-effects analysis, only within-studies 
variation influences the uncertainty of the sum-
mary effect across the combined studies that are 
calculated by the overview. “Within-studies” 
variation refers simply to random sampling vari-
ation from study to study, that is, the variation 
that results each time that a study sample is 
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drawn, at random, from the target population of 
all eligible patients. This sampling variation is 
inversely proportional to the sample size of each 
report. No between-studies variation is presumed 
to exist when a fixed-effects analysis is con-
ducted, as all included studies are assumed to 
measure the same (fixed) effect of the exposure 
or treatment. Therefore, the differences among 
the studies in the magnitude and direction of the 
reported treatment effect do not influence the 
uncertainty that surrounds the summary effect 
calculated by the meta-analysis.

On the contrary, in a random-effects analysis, 
both within-studies and between-studies variation 
influence the uncertainty surrounding the calcu-
lated summary effect. The uncertainty associated 
with the measured estimate of the effect increases 
if the sample size of the combined studies is 
small, because small sample sizes result in large 
within-studies variation. The uncertainty increases 
further if the combined studies differ in important 
design characteristics (such as those shown in 
Table 9.2), because such differences among the 
reports imply that the individual studies should be 
expected to measure different exposure or treat-
ment effects. The more the combined studies dif-
fer in important design characteristics, the greater 
the expected differences in the estimates of the 
effect(s) calculated by these studies; therefore, 
the greater also the between-studies variation, 
and the greater the uncertainty surrounding the 
summary effect calculated by the meta-analysis.

The 95% confidence interval (CI) of the sum-
mary effect measures this uncertainty which sur-
rounds the “average” treatment effect calculated 
by the meta-analysis. The 95% CI calculated 
from a fixed-effects analysis is an estimate of the 
within-studies variation in the combined studies. 
In contrast, the 95% CI calculated from a random-
effects analysis is an estimate of both the within- 
and between-studies variation, thus being, wider 
than the 95% CI calculated from a fixed-effects 
analysis. The difference between these two 95% 
CIs is proportional to the between-studies varia-
tion, or the magnitude of the differences in study-
design attributes as well as in reported results.

Small studies have more of an impact on the 
calculated “average” effect when a random- (as 

opposed to fixed-) effects analysis is undertaken. 
When the literature eligible for analysis consists 
of one (or a few) large investigations and many 
small studies, a single large report may dominate 
the findings of an overview conducted by a fixed-
effects method. This analysis would take only the 
within-studies variation into account, and would 
thus weigh studies with large sample sizes (and 
small within-studies variation) more favorably 
than small reports. Therefore, the conclusions of 
the overview could, for the most part, reflect the 
results of these few large studies, as opposed to 
the composite evidence from all completed stud-
ies. In contrast, the findings of a meta-analysis by 
the random-effects method would reflect the com-
bination of within- and between-studies variation. 
The more the combined studies differ in important 
design attributes, the more important the between-
studies variation becomes, as compared to the 
within-studies variation. As a result, the more the 
influence of a single large study diminishes, and 
the more the stated conclusions of the overview 
accomplish the purpose of the meta-analysis, 
which is to examine the effect of an exposure or 
treatment in many, different situations.

If there are no important design differences 
between the combined studies, random- and 
fixed-effects analyses will produce similar results. 
On the contrary, if there are substantive differ-
ences among the studies, the two methods of 
analysis will produce disparate results [64]. 
Fixed- and random-effects analyses are based on 
different conceptions of the proper role, scope, 
and meaning of meta-analysis. Despite the differ-
ences in assumptions delineated above, there are 
strong opinions about the appropriateness of both 
lines of analysis [65–68].

Assessment of the Combinability  
of the Reports Included  
in the Meta-Analysis

Results of separate studies should be combined 
by the methods of meta-analysis only when the 
estimates of effect size that they have reported 
are sufficiently close to one another. This prereq-
uisite is referred to as homogeneity of effects. 
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The opposite situation – that is, when sizable dif-
ferences exist between investigations in study 
attributes and the reported estimates of effect – is 
known as heterogeneity of effects. A discussion 
of the homogeneity (or heterogeneity) of the 
studies must precede any integration of studies in 
a meta-analysis. Study results should not be inte-
grated in the presence of unexplained heteroge-
neity, although this principle is very often not 
adhered to in published meta-analyses. Statistical 
reviewers of the U.S. Food and Drug Adminis-
tration have denigrated as mere computational 
exercises all overviews that had combined het-
erogeneous reports [69–71].

Homogeneity is assessed statistically by the 
Q test statistic, which examines whether the vari-
ation in the findings of the studies is sufficiently 
modest to have arisen by chance [1–7]. If p < 0.05 
for the Q test statistic, there is a smaller than 5% 
probability that the variation in the results of the 
available studies might have arisen by chance. In 
this situation, the hypothesis of homogeneity is 
rejected, and the results of the studies should not 
be combined. Such statistical heterogeneity gen-
erally reflects the medical heterogeneity of the 
studies. For example, in Fig. 9.1, the effect of 
WBC-containing ABT varies from a 20% reduc-
tion to a 7.3-fold increase in the risk of infection. 
This extreme statistical heterogeneity (p < 0.001 
for the Q test statistic, that is, a smaller than 
1/1,000 probability that the variation in the find-
ings of the studies [21–32] might have arisen by 
chance) reflects the considerable medical hetero-
geneity of the studies (Table 9.2).

The Q test statistic is a chi-square test with 
n − 1 degrees of freedom (where n = number of 
studies included in the overview). Because the 
Q test statistic depends on the number of studies – 
being less sensitive to heterogeneity when the 
number of studies available for meta-analysis is 
small – an alternative test (I2) has been proposed 
to assess the extent of heterogeneity among 
studies [72, 73]. I2 does not inherently depend 
on the number of studies included in the analy-
sis, and it is expressed as a percentage (i.e., the 
percentage of total variation across studies 
attributed to heterogeneity). For this reason, it 
has intuitive meaning to the reader, and it can be 

directly compared between meta-analyses. Low 
 heterogeneity corresponds to I2 values of <25%, 
while high heterogeneity is reflected in I2 values 
of >75% [72]. However, Higgins et al. [72] did 
not indicate any specific cutoff value (e.g., 
>75%) past which it is inappropriate to integrate 
studies owing to heterogeneity. Instead, they 
suggested that quantification of heterogeneity is 
only one component of a wider investigation of 
variability across studies; and that the interpre-
tation of a given degree of heterogeneity will 
differ according to whether the estimates of 
effect from the various studies show the same 
direction of effect.

When studies are heterogeneous, instead of 
integrating results, meta-analysts should present 
an analysis of the possible reasons for variation 
in the findings of the available studies [74–78]. 
The simplest method for explaining heterogene-
ity is a stratification of the eligible studies based 
on design, quality, and/or characteristics of 
enrolled patients and/or administered interven-
tions or exposures. Providing that the hypothesis 
of homogeneity is not rejected within each stra-
tum following such stratification of the available 
studies, the calculated stratum-specific “average” 
treatment effects may help explain the disagree-
ments among the available reports.

In the case of the RCTs of WBC-containing 
ABT and infection (Fig. 9.1 and Table 9.2), meta-
analyses of clinically-homogeneous subsets of 
RCTs by a random-effects method [79] produced 
results diametrically opposed to the findings 
expected from the theory that attributes the effect 
of non-WBC-reduced ABT to WBC-derived sol-
uble mediators [40–43]: there was a reduction in 
the risk of postoperative infection in association 
with poststorage (as opposed to prestorage) 
WBC reduction [18]. More specifically, across 
nine relatively homogeneous RCTs [21–29] that 
transfused allogeneic RBCs filtered before stor-
age to the WBC-reduced arm, no increase in the 
risk of postoperative infection was detected in 
association with non-WBC-reduced ABT (sum-
mary OR = 1.06, 95% CI, 0.91–1.24; p > 0.05 – 
middle panel in Fig. 9.3). If the ABT effect were 
mediated by WBC-derived soluble mediators, 
prestorage filtration should have abrogated an 
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increased infection risk associated with non-
WBC-reduced ABT, because it would have 
removed the allogeneic WBCs from the compo-

nents given to the WBC-reduced arm of each 
study before the WBCs could release any signifi-
cant amounts of mediators into the supernatant 
fluid of the components.

In contrast, across four RCTs [28, 30–32] 
that transfused RBCs filtered after storage to the 
WBC-reduced arm, there was a more than two-
fold increase in the risk of infection in associa-
tion with non-WBC-reduced ABT (middle panel 
in Fig. 9.3). If the ABT effect were mediated by 
WBC-derived soluble mediators, poststorage fil-
tration should not have abrogated an increased 
infection risk associated with non-WBC-reduced 
ABT, because it would not have removed such 
mediators from the supernatant fluid of the 
stored RBCs given to the WBC-reduced arm of 
the studies. Yet, this was the only clinically-
homogeneous subset of studies in which an 
adverse effect of WBC-containing ABT was 
detected (Fig. 9.3).

Investigation of the sources of variation in the 
results of RCTs of WBC-containing ABT and 
all-cause mortality did generate a clinically-
meaningful result, however (Fig. 9.4). Across the 
(also statistically-homogeneous) cardiac-surgery 
studies, there was a 72% increase in mortality in 
association with non-WBC-reduced (compared 
with WBC-reduced) ABT. This result conforms 
to what would have been expected from the 
immunomodulation theory [44] (that there would 
be more of an immunomodulatory ABT in car-
diac surgery where the pro-inflammatory effect 
of the extracorporeal circuit acts as a cofactor 
than in other settings), and it is also calculated in 
adherence to the rule of integrating only medi-
cally- and statistically-homogeneous studies.

Regression techniques offer a more elegant 
method for explaining heterogeneity among stud-
ies [80]. If ten or more original reports on the 
effect of WBC-containing ABT on increasing the 
risk of bacterial infection or all-cause mortality 
were available per explanatory variable included 
in the model, the variation in the results of those 
RCTs might be explained by the following regres-
sion model:

Fig. 9.3 Possible sources of variation in the findings of 
RCTs investigating the association between WBC-
containing ABT and bacterial infection. Stratified meta-
analyses are presented of studies that administered the 
same RBC product to their treatment or control arm or 
were conducted in the same clinical setting. The summary 
ORs calculated across the studies that transfused buffy-
coat-reduced allogeneic RBCs to the treatment arm (seven 
studies; see Table 9.2) or were conducted in gastrointesti-
nal surgery (five studies) are shown solely for the purpose 
of illustration, because these study subgroups were hetero-
geneous (p < 0.01 and <0.001, respectively, for the Q test 
statistic), precluding a medically-meaningful integration 
of their findings. Only the subgroup analysis of the studies 
that administered poststorage-filtered allogeneic RBCs or 
whole blood to the control arm produced a statistically 
significant (p < 0.05) ABT effect (summary OR = 2.25; 
95% CI, 1.12–4.25). Thus, the purported deleterious effect 
of WBC-containing ABT appeared to be prevented by the 
transfusion of WBC-reduced RBCs filtered after – but not 
before – storage. The subgroup of four studies [28, 30–32] 
transfusing poststorage-filtered allogeneic RBCs [28, 30, 
31] or whole blood [32] to the control arm was the small-
est (n = 1,616) of all subgroups shown in the figure and 
consisted of early studies published before 1999 
(Table 9.2). Transfusion of poststorage-filtered allogeneic 
RBCs or whole blood is now rarely (if ever) used in the 
US. BCR buffy-coat-reduced; WB whole blood

= + ++ +3 3 T1 1 2 2ln (odds of infection or mortali ) ,ty ba b bb XX TX
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where
ln = natural logarithm
a = intercept (i.e., a constant)
X

1
 = RBC component given to the treatment arm 
(nonbuffy-coat-reduced or buffy-coat-reduced 
RBCs or whole blood)

X
2
 = RBC component given to the control arm 
(WBC-reduced RBCs or whole blood filtered 
before or after storage)

X
3
 = clinical setting (cardiac surgery, gastrointes-
tinal surgery, or other)

b
1
, b

2
, b

3
 = partial regression coefficients for the 

variables thought to represent possible sources 
of variation in the results of available studies 
(i.e., partial regression coefficients for the 
study descriptors [or explanatory variables] 
X

1
, X

2
, X

3
 above)

b
T
 = partial regression coefficient for being ran-
domly allocated to the WBC-containing arm 
of an RCT, that is, corresponding to the expo-
sure or treatment under study

If some of the calculated estimates of the par-
tial regression coefficients for the predictor vari-
ables in this model (b

1
, b

2
, b

3
) differed from zero 

to a statistically significant extent, the heteroge-
neity among studies might be explained by the 
corresponding study descriptor(s). For example, 
if b

1
, b

2
, and b

3
 all differed significantly from zero, 

the conclusion of the analysis would be that the 
RBC product given to the treatment and control 
arm, as well as the cardiac-surgery (vs. noncar-
diac surgery) clinical setting, could be responsible 
for the extreme variation in the results of the 
reported studies. With the sources of heterogene-
ity thus explained, the effect of random assign-
ment to the receipt of non-WBC-reduced (vs. 
WBC-reduced) ABT (b

T
) could then be  calculated, 

as well as tested for statistical significance.

The Medical Interpretation  
of Overviews

In overviews addressing medical issues, research 
questions must be stated with no less thorough a 
biologic discussion than would appear in a tradi-
tional review, and the findings must be discussed 
in the context of a review of pathophysiologic 
principles and results of basic laboratory research 
and individual RCTs [78]. Most importantly, the 
relevance of the findings to patient care must be 
explained to the reader. In addition, readers of 
overviews must be reminded that meta-analyses 
use historical material from studies published 
over a considerable period, because this histori-
cal nature of the material may influence the 
applicability of the findings to contemporary 
clinical practice.

Fig. 9.4 Possible sources of variation in the findings of 
RCTs investigating the association between WBC-
containing ABT and short-term (up to 3-month posttrans-
fusion), all-cause mortality. Stratified meta-analyses are 
presented of studies that administered the same RBC 
product to their treatment arm or control arm or were con-
ducted in the same clinical setting. The summary ORs cal-
culated across the studies that transfused poststorage-filtered 
allogeneic RBCs (two studies [28, 31]) or were conducted 
in gastrointestinal surgery (two studies [26, 31]) are shown 
solely for the purpose of illustration, because these study 
subgroups were heterogeneous (p = 0.02 for the Q test sta-
tistic in both cases). Only the subgroup analysis of studies 
conducted in cardiac surgery [21, 23, 25, 28, 29] produced 
a statistically significant (p < 0.05) ABT effect (summary 
OR = 1.72; 95% CI, 1.05–2.81). Across the six remaining 
studies conducted at other settings [24, 26, 27, 31, 33, 34], 
the summary OR was 0.99 (95% CI, 0.73–1.33). Both the 
cardiac-surgery and the noncardiac-surgery studies were 
homogeneous (p > 0.10 and p = 0.20, respectively, for the 
Q test statistic). Cardiac-surgery studies enrolled a total of 
2,990 patients; noncardiac-surgery studies a total of 5,045. 
BCR buffy-coat-reduced
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For example, the only adverse effect detected 
with WBC-containing ABT vis-à-vis the develop-
ment of bacterial infection derived from RBC 
components (middle panel in Fig. 9.3) no  longer 
used in the US. Regardless of any methodologic 
reasons that may have produced this finding across 
four studies [28, 30–32], the only analysis that is 
clinically relevant today is the comparison between 
prestorage-filtered WBC-reduced and non-WBC-
reduced RBCs. In this latter comparison, no 
adverse effect of WBC-containing ABT on bacte-
rial infection was detected.

The finding that WBC-containing ABT may 
be related to increased all-cause mortality in car-
diac-surgery (lower panel in Fig. 9.4) is most rel-
evant today, however, because not all blood 
transfusion services in the US administer WBC-
reduced components to patients undergoing 
open-heart surgery.

The value of meta-analysis in combining 
patient populations enrolled in separate studies 
for the purpose of documenting the existence of 
an exposure or treatment effect is not universally 
accepted [80–82]. The reason is that meta- 
analyses and large RCTs disagree 10–35% of the 
time, that is, more often than would be expected 
by chance [83–86]. This is probably because the 
findings of meta-analyses are susceptible to the 
effects of selection and observation bias, in a 
manner similar to the results of traditional obser-
vational original reports.

An observational study conducted at a single 
institution and investigating the effect of an expo-
sure or treatment on a disease must enroll all 
patients who are sequentially admitted to that hos-
pital or service with a specific diagnosis. If sub-
jects are missed or excluded, selection bias could 
result. Similarly, the validity of a meta-analysis 
depends on the complete sampling of all the stud-
ies performed on a particular topic. Validity can be 
preserved if a representative sample is obtained, 
but any incomplete sample is a potentially biased 
one [87]. Unfortunately, meta-analysts may not be 
able to locate all published studies, because com-
puterized data bases do not cover all periodicals, 
search algorithms often fail to identify relevant 
articles, and the indexing of studies is imperfect 
[88]. Even if the literature is optimally searched, 
studies published as government reports, book 

chapters, dissertations, conference proceedings, 
etc., may not be captured, while unpublished 
 studies will not be identified. Published trials differ 
systematically from unpublished ones, in that they 
are more likely to have a larger sample, and to have 
generated statistically significant results [89]. The 
systematic exclusion of small and negative studies 
from a meta-analysis that conditions eligibility on 
achievement of publication status is known as pub-
lication bias [90].

There is ample evidence of publication bias in 
the medical literature. Easterbrook et al. [91] doc-
umented a 3.8-fold increase in the odds of publi-
cation (95% CI, 1.5–9.8) for observational studies 
reporting statistically significant findings, as 
compared to studies with null results. Multivariate 
analysis showed that the better odds of publica-
tion could not be explained by the quality of study 
design. On the contrary, there was a trend towards 
a greater number of statistically significant results 
with poorer quality studies [91].

Selection bias can arise not only during 
retrieval of studies from the literature, but also 
during assessment of the eligibility of the retrieved 
reports. In evaluating the quality of investigations, 
analysts may be influenced by knowledge of the 
study results or journal of publication. They may 
even be inclined to modify eligibility criteria, so 
as to include in the overview reports from presti-
gious journals. According to Felson [87], selec-
tion bias is the principal reason for discrepant 
results in meta-analyses. Different teams of ana-
lysts may base their conclusions on alternate sets 
of original reports, generating either statistically 
significant or null (i.e., statistically insignificant) 
findings. This was also the explanation for the dis-
crepant results between the meta-analysis [18] 
whose results are depicted in Figs. 9.3 and 9.4 and 
the earlier overviews [35, 36] that had included a 
smaller number of RCTs whose findings had been 
made available through 2002 [92].

Meta-Analyses of Studies  
of Diagnostic-Test Accuracy

Development of new fields often requires the 
development of new methods [93]. The cardinal 
difference between RCTs and studies of the 
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 accuracy of diagnostic tests is that all patients 
enrolled in RCTs have the disease of interest; 
whereas studies of diagnostic-test accuracy 
include a mixed population of subjects with and 
without disease. Moreover, RCTs measure one 
quantity, that is, the effect of a therapeutic inter-
vention in treated patients vs. controls; whereas 
studies of diagnostic-test accuracy measure two 
quantities, that is, the sensitivity and specificity 
of a test. These two quantities are interdependent, 
and they also depend on the cutoff point used in 
each study for judging the results of the test to be 
positive; sensitivity can be increased by decreas-
ing the cutoff point and decreasing the specificity, 
or vice versa. Sensitivity and specificity are thus 
negatively correlated.

In combining the findings (Table 9.3) of stud-
ies of diagnostic-test accuracy, an assumption is 
made that the published estimates of the sensitiv-
ity and specificity of a test are likely to vary 
among studies, because of differences between 
the studies in the cutoff point used for judging the 
results of the test to be positive. Accordingly, 
methods for integrating the findings of these 
reports must address the interdependence between 
sensitivity and specificity, and the influence of 
the cutoff point used in each study on the corre-
sponding estimate of accuracy. To meet the for-
mer objective, the estimates of sensitivity are not 
combined independently of the estimates of spec-
ificity, but the two components of accuracy 

obtained from each study are considered jointly. 
To remove the effect that the variation of the cut-
off point has on accuracy, the diagnostic accuracy 
of a laboratory test across the available studies is 
summarized in the form of a summary receiver-
operating characteristic (ROC) curve that plots 
the “average” true-positive (TP) proportion cal-
culated for the test against the “average” false-
positive (FP) proportion (Table 9.4) [12–17]. 
If this initial analysis shows that the accuracy of 
the laboratory test is constant within a range of 

Table 9.3 Diagnostic accuracy of a laboratory test

Disease status
TotalsPresent Absent

Positive test results True-positives (TP) False-positives (FP) TP + FP
Negative test results False-negatives (FN) True-negatives (TN) FN + TN
Totals TP + FN FP + TN All individuals tested

=
Number of correct test results

Accuracy
Number of people tested

= =
+

Number of true - positive test results TP
Positive predictive value

Number of all positive test results TP FP

= =
+

Number of true - negative test results TN
Negative predictive value

Number of all negative test results TN FN

= =
+

Number of true - positive test results TP
Sensitivity

Number of people with disease tested TP FN

= =
+

Number of true - negative test results TN 
Specificity

Number of people without disease tested TN FP

Table 9.4 Interrelationships between the sensitivity and 
specificity of a diagnostic test

True-positive proportion (TPP) = Sensitivity
True-negative proportion (TNP) = Specificity
False-positive proportion (FPP) = 1 – Specificity
False-negative proportion (FNP) = 1 – Sensitivity
TPP + FNP = (Sensitivity) + (1 – Sensitivity) = 1
TNP + FPP = (Specificity) + (1 – Specificity) = 1
Sensitivity = P (T+/D+)a = TPP
Specificity = P (T−/D−)b = TNP
1 – Specificity = P (T+/D−)c = FPP
1 – Sensitivity = P (T−/D+)d = FNP
a Probability of the test’s being positive given the presence 
of disease
b Probability of the test’s being negative given the absence 
of disease
c Probability of the test’s being positive given the absence 
of disease
d Probability of the test’s being negative given the pres-
ence of disease
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clinically relevant cutoffs, a point estimate of the 
summary accuracy of the test – the summary 
OR – is also calculated, in lieu of (or in addition 
to) the summary OR curve. Statistical methods 
for integrating data on laboratory test accuracy 
have both been developed and are under develop-
ment [94, 95].

To control for the interdependence between 
the estimates of sensitivity and specificity derived 
from each primary study, meta-analyses combine 
these two quantities into an OR, and they then 
use the OR as the overall measure of the accuracy 
of the laboratory test as calculated from each 
study (Table 9.5). The OR is defined as the odds 
of a TP test result, divided by the odds of a FP 
test result, that is, the odds of obtaining a positive 
test result as calculated from a person with dis-
ease, divided by the odds of obtaining a positive 
test result in a person without disease. The natu-

ral logarithm of the odds of a TP test result (i.e., 
ln[TPP ÷ (1 − TPP)]) is designated as logit (TPP). 
The natural logarithm of the odds of a FP test 
result (i.e., ln[FPP ÷ (1 − FPP)]) is designated as 
logit (FPP). The natural logarithm of the OR, 
designated as D, equals the difference between 
these logits (i.e., D = logit [TPP] – logit [FPP]). D 
is a logodds ratio that measures how well the test 
discriminates between subjects with and without 
the disease. S is a measure of the threshold for 
classifying a test result to be positive, and it 
equals the sum of the logits (i.e., S = logit 
[TPP] + logit [FPP]); it is large and positive if 
both the TPP and the FPP are large, and it is nega-
tive when they are small [95, 96].

The calculations involved in estimating the posi-
tion of a summary ROC curve across studies included 
in a meta-analysis are summarized in Table 9.6. 
From each primary study, the meta-analysts extract 

Table 9.5 Overall diagnostic accuracy of a laboratory test, as determined by the odds ratio

=
odds of a true - positive test result

Odds ratio
odds of a false - positive test result

or

=
odds of obtaining a positive test result in a person with disease

Odds ratio
odds of obtaining a positive test result in a person without disease

or

-
=

-
(true - positive proportion) /1 (true - positive proportion)

Odds ratio
(false - positive proportion) /1 (false - positive proportion)

or

-
=

-
(sensitivity) /1 (sensitivity)

Odds ratio
1 (specificity) / (specificity)

Sensitivity (%) Specificity (%) Odds ratio Natural logarithm of odds ratioa

99.9 99.9 999,000.00 13.8

99.8 99.8 249,500.00 12.4

99.5 99.5 39,800.00 10.6

99.0 99.0 9,802.00 9.2

98.0 98.0 2,402.00 7.8

95.0 95.0 361.00 5.9

90.0 90.0 81.00 4.4

80.0 80.0 16.00 2.8

70.0 70.0 5.44 1.7

60.0 60.0 2.25 0.8

50.0 50.0 1.00 0.0
a Measure of the overall accuracy of a laboratory test used in the meta-analyses of studies of the diagnostic accuracy of 
laboratory tests
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data for a 2 × 2 contingency table showing the 
reported TP, FP, true-negative (TN), and false-
negative (FN) results of the laboratory test under 
evaluation. They then compute a true-positive 
proportion (TPP = TP ÷ [TP + FN]) and a false-
positive proportion (FPP = FP ÷ [FP + TN]) for 
each contingency table, and calculate the logit 
(TPP) and the logit (FPP), as well as the differ-
ence between the logits (D) and the sum of the 
logits (S). Having summarized the data from each 
primary study with these two quantities (e.g., D

i
 

and S
i
 for the ith study), they fit a simple linear 

regression model using D as the dependent vari-
able and S as the predictor variable: [95, 96]

= + .D Sa b

By employing this logarithmic transforma-
tion, it is possible to use a line to represent a cur-
vilinear relationship. The fitted regression line 
can then be transformed back to the conventional 

axes of an ROC curve (i.e., a plot of the TPP vs. 
the FPP), and depict a summary ROC curve 
across the combined studies [95, 96].

The intercept of the model (a) is the estimated 
logodds ratio when the accuracy of the test 
remains constant as the cutoff point varies from 
study to study. The regression coefficient or slope 
(b) provides an estimate of the extent to which the 
logodds ratio depends on the cutoff used. When b 
is near zero (or, at least, if −0.5 < b < +0.5), the 
shape of the curve calculated by the transformed 
model approximates that of a traditional ROC 
curve. Also if b does not differ significantly from 
zero, the accuracy of the test does not depend on 
the particular cutoff point used in each study, and 
the accuracy of the test across the combined stud-
ies can be summarized by the logodds ratio given 
by the intercept a. The larger this intercept is, the 
closer the curve is positioned to the upper left 
corner in the ROC space, which indicates a greater 
diagnostic accuracy for the test [95, 96].

Table 9.6 Calculation of a summary receiver-operating characteristic (ROC) curvea

A. Calculate the quantities D
i
 and S

i
 for each study included in the analysis

1. Extract 2 × 2 contingency table counts from the report of each study:

Test results
Disease status
Present Absent

Positive True-positives (TP) False-positives (FP)
Negative False-negatives (FN) True-negatives (TN)

2. Calculate the TPP, FPP, and OR
i
 for each study:

=
+
TP

True - positive proportion (TPP)
TP FN

=
+
FP

False - positive proportion (FPP)
FP TN

TPP (1 TPP)
Odds ratio (OR )

FPP (1 FPP)i

¸ -
=

¸ -

3. Calculate the quantities D
i
 and S

i
 for each study:

= = -D ln(OR ) logit (TPP) logit (FPP)i i

= +S logit (TPP) logit (FPP)i

where ln is the natural logarithm, logit (TPP) is the natural logarithm of the odds of a true-positive test result; 
and logit (FPP) is the natural logarithm of the odds of a false-positive test result

B. Fit a simple linear regression model using the quantities D
i
 and S

i
 from each study

D = a + b S
C. Transform this model back to the conventional axes of TPP vs. FPP, and draw a summary ROC curve over the 

range of the data
aSee Littenberg and Moses [95] and Moses et al. [96]
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Obstacles to the Use of Meta-
Analysis for the Integration of 
Findings of Studies of Diagnostic-
Test Accuracy

As discussed previously in the context of RCTs: 
(1) low-quality studies should be either excluded 
from a meta-analysis or weighed in proportion to 
their quality; and (2) available studies should be 
combined only if the variation in reported results 
is sufficiently modest to be attributed to chance. 
In the case of RCTs, the Q test statistic quantifies 
the probability that the variation in the results of 
the available studies is sufficiently modest to per-
mit their integration by the methods of a meta-
analysis. The meta-analytic methods are still 
being refined, however, for use with studies of 
diagnostic-test accuracy, and the lack of as fully 
developed methods can be somewhat of an 
impediment to the use of meta-analysis in pathol-
ogy. The calculations presented in Table 9.6 are 
sometimes deemed to be too complicated, and 
many investigators succumb to the temptation of 
integrating estimates of sensitivity independently 
of the corresponding estimates of specificity; as 
well as estimates of specificity independently of 
the corresponding estimates of sensitivity. 
Although it is easy to do so with the meta-analysis 
software made widely available for RCTs, such a 
simplistic approach to the  analysis is valid only 
when the meta-analysts have  demonstrated a 
lack of dependence of the  diagnostic-test accu-
racy on the cutoff employed in each retrieved 
study.

The most important obstacle, however, to the 
use of meta-analysis for integrating results of 
studies of diagnostic-test accuracy are the subop-
timal technical or scientific merits of the studies 
available for analysis. Several aspects of study 
design and analysis [97–99] need thus be consid-
ered by analysts in judging the quality of studies 
of diagnostic-test accuracy (Table 9.7). These 
issues have been discussed in detail by Sackett 
et al. [100].

When the accuracy of an index laboratory test 
is investigated, an assumption is made that  

the employed “gold standard” can definitively 
 discriminate between individuals with and 
 without disease. If the available “gold standard” 
is imperfect, there will be an error in the initial 
estimation of the accuracy of the laboratory test 
[101–103]. Available tests with established diag-
nostic accuracy rarely meet the definition of a 
“gold standard”; however, those evaluating the 
diagnostic accuracy of new laboratory tests must 
strive to use the best available method for ascer-
taining the presence of disease in their study 
population.

Ideally, all enrolled patients should undergo 
complete diagnostic work-ups without knowl-
edge of the results of the laboratory test under 
evaluation. However, if the “gold standard” 
requires an invasive procedure, it may be desir-
able to restrict its use to a subset of the study 
population. This approach is acceptable only if 
the selection of patients for verification by the 
“gold standard” is random. If the patients who 
undergo the invasive procedure are selected based 
on abnormal results from other tests, or because 

Table 9.7 Questions to be considered in assessing the 
quality of studies of the diagnostic accuracy of laboratory 
tests

Was the “gold standard” used definitive?
Was the “gold standard” used independent of the test 
under evaluation?
Were all individuals included in the study – or a 
random subset of individuals – tested by the “gold 
standard?”
Did the individuals included in the study represent a 
consecutive series or a randomly selected study 
population?
Were any individuals withdrawn from the analysis 
following their inclusion in the study, because of 
equivocal test results or any other reason?
Did the performance of the test under evaluation and 
the “gold standard” conform to the standard of 
practice?
Was the uncertainty surrounding the calculated 
estimates of sensitivity and specificity of the test 
quantified?
Was the cutoff point used for interpreting the results of 
the test as positive clinically appropriate, and/or was it 
varied within a clinically relevant range?
Was the clinical setting in which the test was evaluated 
adequately described?
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they have risk factors for disease, etc., verifica-
tion bias is introduced which can seriously distort 
the results of the study. The effects of this sys-
tematic error on the diagnostic accuracy of the 
test are unpredictable, and they cannot be cor-
rected statistically [103–105].

The accuracy of a laboratory test should be 
assessed in consecutive patients, or patients 
selected randomly for inclusion in the study, and 
all enrolled patients should be included in the 
analysis. No withdrawals of patients can be per-
mitted following their inclusion in the study, 
because of equivocal test results or any other rea-
son. The methods for carrying out the test under 
evaluation and the gold standard should be 
described in sufficient detail, and the cutoff point 
used for judging either test to be positive should 
be specified. Moreover, the uncertainty surround-
ing the calculated estimates of sensitivity and 
specificity should be communicated to the reader, 
by reporting 95% CIs for these proportions. To 
remove the influence of an arbitrary cutoff point 
on the reported estimates of sensitivity and speci-
ficity, the cutoff for the test should be varied 
within a clinically relevant range, and the diag-
nostic accuracy of the test should be reported in 
the form of an ROC curve. Alternatively, if a sin-
gle cutoff point is used, the clinical appropriate-
ness of the chosen cutoff point should be 
discussed. The clinical setting in which the test is 
evaluated should be stated explicitly, and a 
description of the characteristics of the enrolled 
patients (e.g., age, gender, symptoms, results of 
other diagnostic tests, etc.) should be provided.

Once all studies of diagnostic-test accuracy 
conform to the STARD guidelines [106], perhaps 
the most important obstacle to the use of meta-
analysis for integrating the results of studies of 
diagnostic-test accuracy will have been over-
come. Further guidelines (for both the conduct 
and the reporting of studies) are provided in the 
STROBE statement [107], which applies to 
observational studies in general.

When the available studies of the accuracy of 
a laboratory test differ in important study charac-
teristics (such as the employed cutoff point or the 
disease prevalence in the included population), 

the diagnostic accuracy of the test should be 
assumed to differ from study to study, according 
to the varying characteristics of each study. 
Therefore, in such a situation, a random-effects 
method should be used to integrate the findings 
of the available studies. Random-effects meth-
ods that take into account the dependence of 
 sensitivity and specificity on the cutoff point used 
in each study continue to be developed. The 
fixed-effects method delineated in Table 9.6 for 
the calculation of a summary ROC curve [95, 96] 
can be modified to conform to the assumptions of 
a random-effects analysis.

Another impediment to the use of meta-analysis 
in pathology is that individuals included in stud-
ies of diagnostic-test accuracy are not allocated 
randomly by the investigators to have (or to not 
have) the disease of interest. The validity of sta-
tistical tests is guaranteed only if the allocation 
of subjects to comparison arms is random. In 
RCTs, randomization makes it possible to ascribe 
a probability distribution to the difference in out-
come between two arms that receive equally 
effective treatments under the null hypothesis. 
Knowledge of this distribution is a prerequisite 
for assigning significance levels to any observed 
differences. If the allocation of subjects to groups 
is not random, the validity of tests of significance 
depends on additional assumptions about the 
comparability of the groups and the appropriate-
ness of the statistical models. The veracity of 
these latter assumptions is difficult to establish.

Finally, in the case of RCTs, there is ample 
evidence of publication bias in the medical litera-
ture, and meta-analyses of RCTs consider the 
possible effect(s) of this bias on the stated con-
clusions. The effect of publication bias on studies 
of diagnostic-test accuracy is not as well 
researched, but many investigators suspect that 
the published studies of diagnostic-test accuracy 
are a biased subset that tends to overestimate the 
diagnostic accuracy of the test under evaluation. 
Since the studies of diagnostic-test accuracy are – 
in their vast majority – observational, it is likely 
that publication bias may have an even larger 
impact on meta-analyses of studies of diagnostic-
test accuracy than on meta-analyses of RCTs.
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Conclusions

Meta-analyses are a supplement to RCTs, which 
remain the gold standard for evaluating the effi-
cacy of therapeutic interventions, but need to be 
supplemented by meta-analyses in order to 
broaden the applicability of the findings. 
Furthermore, meta-analyses can be an important 
research tool for the systematic evaluation of the 
quality of published studies and for the disci-
plined investigation of reasons for disagreements 
among reports. Overviews can identify errors 
and shortcomings in completed studies and may 
be able to explain why trial results differ. In the 
past, narrative reviews of the literature served 
these functions in a less formal manner. Meta-
analyses are much better suited for these pur-
poses, because of their objective and quantitative 
nature.

Since meta-analysis is a technical statistical 
method, many clinicians find themselves unable 
to appreciate its nuances and limitations in the 
same way that they can appreciate those of a tra-
ditional original report. However, readers of the 
medical literature need to be familiar with the 
definitions and assumptions of fixed- vs. ran-
dom-effects analyses, as well as with the mean-
ing of the results of the Q test statistic or other 
tests for homogeneity [108]. This is because 
health-policy guidelines – as well as recommen-
dations for patient management – are already 
being based, and are likely to be increasingly 
based in the future, on input from statistical 
overviews.

Meta-analysis has several potential uses when 
the diagnostic accuracy of laboratory tests is 
investigated, but it is a rather new field of study 
that needs to refine its tools and establish its cred-
ibility. Validated instruments for assessing the 
quality of studies, statistical tests for judging the 
combinability of studies, and random-effects 
methods for integrating the findings of studies are 
well-developed for RCTs, and continue to be 
developed for studies of diagnostic-test accuracy. 
In the future, meta-analysis should become as 
powerful a tool for technology assessment in 
pathology as it is for clinical medicine.
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In this chapter, we discuss two aspects of 
 decision-making in anatomic pathology: decision 
analysis (DA) and decision support systems 
(DSS). As background information for our dis-
cussion of DA, we will distinguish two kinds of 
ignorance: vagueness and probabilistic uncer-
tainty and then discuss the two dominant interpre-
tations of probability – stable relative frequencies 
(frequentist) and degrees of belief (Bayesian).

Subjective Probability and Decision 
Analysis

Subjective probability is the language of DA. DA 
provides the conceptual machinery to integrate a 
suitable characterization of the basic elements of 
the decision – actions, information, and prefer-
ences – to produce the best alternative. In consid-
ering ways in which these concepts can be usefully 
deployed in day-to-day anatomic diagnostics, we 
can ask several questions. We start by asking the 
question: is there a clinically relevant decision to 

be made? Other questions involve the important 
decision analytic concepts of the value of infor-
mation, Bayesian updating, sensitivity analysis, 
and cost functions. Finally, we will  discuss 
 strategies for dealing with diagnostic assignment 
uncertainty that persists after information gather-
ing strategies have been exhausted.

Decision Support Systems

DSS are computer-based classifiers that evalu-
ate evidence and classify a situation either in 
service of morphological diagnosis or the pre-
diction of some aspect of a patient’s future, such 
as the risk for developing invasive cancer, prog-
nosis or prediction. Diagnostic systems are basi-
cally imitative. Rule-based expert systems 
attempt to model the diagnostic performance of 
expert pathologists. They have limitations that 
will be discussed against the background of top-
ics discussed in Chap. 6. Prognostic systems 
employ what is termed “case-based reasoning 
(CBR),” matching a set of patient predictors 
with those of a large number of database patients 
for whom predictors and clinical outcomes are 
known. The use of this term has little to do with 
clinical CBR and, in mathematical-statistical 
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terms, amounts to a nearest-neighbor search. 
The “curse of dimensionality” discussed in 
Chap. 7 again intrudes.

DSS are basically classifiers; they evaluate 
evidence and classify a situation either in service 
of diagnosis or prediction of some aspect of a 
patient’s future clinical phenotype, F

Clin
(t). In 

this discussion, we are interested less in the spe-
cifics of DSSs and more in locating them within 
the classificatory and diagnostic framework 
explained in Chap. 6. From that perspective, we 
ask what can we expect from diagnostic DSSs 
given the problems presented to expert systems 
by the translation-transmission problem and the 
private, microrevisionary changes that constantly 
shift the individual expert’s landscape and bound-
aries. In short, that an expert’s opinion is a 
 moving target and that experts’ mental “maps” of 
the classificatory terrain are almost always, par-
ticularly in the neighborhood of boundaries. 
noncongruent.

Scope-Side Decision Analysis

DA and modern mathematical probability were 
born at the same time in France in the seventeenth 
century [1, 2]. These ideas have been elaborated 
and systematized over the ensuing 300 years and, 
in the twenty-first century, subjective expected 
utility (SEU) theory informs the way we think 
about everything from economics to public health 
policy to personal decision-making. Its principles 
have become today’s common sense and they 
form the core of EBM. In the past 50 years, DA 
has become a discipline in its own right with its 
own journals and academic departments. The 
current mathematical formulations of DA are 
daunting, but the core ideas are easily stated and 
quite intuitive. Sox provides a detailed account, 
with worked examples, of DA in a medical set-
ting [3].

We are interested here in setting out the 
basic ideas of DA and believe that the quality 
of both the teaching and practice of diagnostic 
surgical pathology would be improved by 
informing day-to-day decision-making with 
these principles.

The Basic Ideas of Decision Analysis:  
The Decision Basis

Decisions involve choosing among alternatives 
that will yield uncertain futures, for which we have 
preferences. There are three elements of any deci-
sion: (1) what you can do or the alternative actions 
that can be taken; (2) what you know, the informa-
tion you have; and (3) what you want, your 
 preferences. Collectively, these three represent the 
decision basis, the specification of the decision. 
DA provides the logic that operates on the decision 
basis – actions, information, preferences – to pro-
duce the best alternative. Crucial to this process is 
a clear description by the decision maker of pre-
cisely what decision is under consideration at the 
time – the framing of the decision. This frame will 
inform all elements of the decision basis [4].

Vagueness vs. Probabilistic Uncertainty

DA deals with uncertainty of a very specific type 
and not with other types; it is crucial to understand 
the difference. There are two kinds of uncertainty: 
vagueness and probabilistic uncertainty [5]. As 
discussed in Chap. 6, vagueness is a characteristic 
of verbal descriptions of both the features that fig-
ure in the morphologic definition of an entity and 
the delimitation of a neoplastic kind (K

Neop
’s) from 

its neighbors in the phenospace; vagueness gives 
rise to assignment uncertainty. Probabilistic uncer-
tainty is predicated of either unexamined features 
of members of a particular precisely defined class 
or their future behavior. We may be in doubt about 
whether a particular individual neoplasm (I

Neop
) is 

A or B (an in-between case) after our exhaustive 
examination – that’s vagueness. On the other hand, 
we may be certain that the I

Neop
 is an “A,” but 

uncertain whether that patient will experience a 
recurrence or not – that’s probabilistic uncertainty. 
This is what motivated my use of the lottery meta-
phor to model managerial K

Neop
’s. Vagueness is 

uncertainty about which lottery the patient is in; 
probabilistic uncertainty is intrinsic to the lottery.

DA banishes vagueness – assignment 
 uncertainty – from the modeling process by 
insisting that predicates (feature descriptors, like 
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“large,” “crowded,” “atypical”) and category des-
ignations (“complex atypical endometrial hyper-
plasia”) pass, what the decision analyst, Ron 
Howard, calls a “clarity test.”

“Consider a clairvoyant who knew the future, 
who had access to all future newspapers, read-
ings of physical devices, or any other determin-
able quantity. The clarity test asks whether the 
clairvoyant [literal at the level of Asperger’s 
 syndrome] would be able to say whether or not 
the event in question occurred or, in the case of a 
variable, the value of the variable.” He exempli-
fies this with the term “technical success” “[this] 
would have to be defined in such terms as ‘able to 
operate × hours under conditions y without fail-
ure’ […]” [6]. This insistence is appropriate for 
decision analytic modeling: probabilistic reason-
ing is predicated on crisp, unambiguously defined 
categories; the foundation of mathematical prob-
ability is classical set theory. Something is either 
“A” or “not A,” there is nothing in-between; this 
is Aristotle’s law of the excluded middle.

For most situations involving vagueness 
(Chap. 6), this requirement seems forced and 
arbitrary and has led to the development of alter-
native, more flexible logics. Fuzzy theory (fuzzy 
set theory, fuzzy logic, fuzzy categories) was 
developed in the 1960s in by a U.C. Berkeley 
engineer, Lotfi Zadeh, in response to these prob-
lems [7]. There are several accessible introduc-
tions [8–10]. The medical applications have been 
explored in a series of publications by Sadegh-
Zadeh [11]. Some of these techniques have been 
incorporated in DSS [12].

Interpretations of Mathematical 
Probability

Mathematical probability refers to an axiomatic 
branch of mathematics and is used, noncontro-
versially, to model games of chance (classical 
probability). Controversy arises in extending the 
model to real-world situations outside the casino. 
There are two main schools of thought (and many 
variants): frequentist and subjectivist (or person-
alist). The frequency interpretation holds that 
probability should model long-run stable empiri-

cal frequencies. For example, repeated tosses of a 
coin yields a relative frequency of 0.5 for a “fair” 
coin. In many real-world applications, long-run 
frequencies are commonly never achieved. For 
example, we talk about the probability of it rain-
ing on a particular day or the probability of a suc-
cessful space craft launching (e.g., the Challenger 
space shuttle). A different notion of probability is 
required to handle these situations. One general 
response to these situations is to view probability 
as a measure of belief. People who interpret prob-
ability in this way are called subjectivists or per-
sonalists. Formally, for them, a probability is 
cashed out for a willingness to bet on one possi-
bility over another; DA is committed to this view 
of probability. The probabilist Spiegelhalter 
describes an experiment that helps to fix these 
concepts. He is addressing a lay audience.

I hold a coin and ask, “What is the chance this will 
come up heads?” They cheerfully say something 
like “50%” or “half-and-half.” I then toss the coin, 
catch it, flip it onto the back of my hand without 
revealing it, and ask, “What is the probability this 
is heads?” Pause. Then someone, less confidently, 
mumbles “50%.” I reveal the coin to myself, but 
not to them, and ask, “What is your probability that 
this is heads?” Very grudgingly they might eventu-
ally admit “50%.” In this experiment I have gone 
from pure aleatory [games of chance, or frequen-
tist interpretation] uncertainty to pure epistemo-
logical [subjectivist] uncertainty, showing (1) 
epistemological uncertainty is “in the eye of the 
beholder” (my probability was eventually 0% or 
100%, whereas theirs was still 50%), (2) that the 
language of probability applied to both forms, and 
(3) that these different types of uncertainty may be 
perceived differently [13].

Much has been written in the statistical and 
machine learning literature on these often con-
tentious issues of interpretation; Hacking and 
Hájek are good places to start [2, 14, 15].

The Clinician’s Lament

Equipped with these distinctions, we can now exam-
ine a common complaint about pathologists. The 
disgruntled clinician points out: “I have to have a 
certain diagnosis in order to proceed with my clini-
cal work.” There is, of course, no question of elimi-
nating probabilistic uncertainty; most of us discover 
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this shortly after emerging from the womb. Voltaire 
observed: “Doubt is not a pleasant condition, but 
certainty is absurd.” What are we to make of the 
clinician’s insistence on certainty from patholo-
gists? When clinicians insist on certainty, it is usu-
ally assignment uncertainty they are worrying about. 
Their therapies are indexed by our assignments; cli-
nicians are usually completely comfortable with 
probabilistic  uncertainty given a fixed assignment; 
in other words, as long as they know what lottery 
they are dealing with. Again, the macho surgical 
pathologist’s response – “May be wrong, but never 
in doubt” – is about assignment uncertainty.

Applying the Basic Intuitions  
of Decision Analysis to Diagnostic 
Pathology

How does DA help in oncopathological diagno-
sis? The underlying strategy here is to locate a 
particular diagnostic problem in the patient’s spe-
cific clinical context and ask: “What information 
does the clinician require to move the patient’s 
clinical management along to the next step?” In 
this first section, we discuss some generalizations 
and guiding principles useful in day-to-day diag-
nosis in surgical pathology.

Our heritage from the legendary surgical pathol-
ogists of the mid-twentieth century was admission 
to the clinical decision-making process. Pathologists 
throughout the world emerged from their hospital 
basements and became full participants in patient 
care management. This activist tradition empha-
sized the importance of locating anatomic diagno-
ses within a clinical decision-making framework. 
Exhilarating, though this was, it came with a price; 
the exposure of an elaborate nineteenth and early 
twentieth century tumor taxonomy to the minimal-
ism of pragmatic oncopathology. For example, 
there is the taxonomically unglamorous truth that 
the status of the excision margins and tumor size 
are more important than which of five different 
subspecies of tumor “A” (all, currently, calling for 
the same therapy) might be afflicting the patient. 
There was a growing appreciation of the distinc-
tion one of us (MH) made in Chap. 6 between 
S-classifications (I used histogenetic classifications 

as a example) and M-classifications. I commented 
there that S-classifications are fine-grained and 
mark all the myriad salient phenotypic distinctions 
that can be made; M-classifications are coarse-
grained and codify the much fewer clinically rele-
vant  distinctions. The public working out of this 
 sentiment is seen in the several attempts to group 
HG-K

Neop
’s into managerially relevant categories. 

Examples include the soft tissue  neoplasms and 
gynecologic mesenchymal proliferations [16, 17]. 
We are now confronted with a new challenge – 
both practical and pedagogical; the mapping of the 
many HG-K

Neop
’s into a handful of managerial 

classes. In other words, there has been a gradual 
move toward the diagnosis that is “good enough to 
get on with clinical management” and away from 
the “histogenetically right diagnosis.”

The “Future Utility of the Distinction” 
Argument

Elaborate histological, cytogenetic, and molecular-
genetic workups are often justified on the grounds 
that something useful will turn up that will be of use 
in the future. “How are we ever going to know if a 
distinction is important if we don’t record it?” The 
problem with unsponsored research efforts of this 
sort is that they will ultimately have to be repeated in 
a disciplined way (see internal validity discussion in 
Chap. 7) and it may well interfere with cost- effective, 
efficient, patient management. So, the liberal use in 
our literature of locutions like “It is important to dis-
tinguish ‘A’ from ‘B,’ ‘C’ and ‘D’ have to be criti-
cally examined; the obligatory follow-up questions: 
‘Why?’ ‘Important for whom?’ It may well be that 
the distinction is one that can, in principle, be made, 
but should a clinical manager be willing to pay for 
this distinction? What is the evidence that something 
different should be done in light of this new infor-
mation? The problem is compounded when the cli-
nician, innocent of our classificatory ways, assumes 
that because we have a name for something, it is a 
distinction he should worry about. Of course, this 
problem can run the other way. In the absence of any 
convincing evidence, clinicians, in their role of the 
final decision maker, coerce the pathologist to 
engage in many empty rituals. Searching for keratin 
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positive cells in sentinel lymph node biopsies and 
performing CD117 examinations on random malig-
nancies come to mind [18].

To date, discussions of histopathology 
employing  EBM principles have concentrated 
 exclusively on managerial distinctions. Let’s take 
a look at some guiding principles and how they 
play out in day-to-day diagnostics.

Background Principles to be 
Considered in Decision Analysis

Good Decisions and Good Outcomes

It is important to distinguish between good/bad 
 decisions and good/bad outcomes. Uncertainty in 
medicine is ineliminable; good decision-making 
consists in “taming chance,” in employing a 
coherent decision-making strategy that uses one’s 
best guess about uncertain quantities in light of 
current information. Good decision analytic tech-
nique doesn’t guarantee a favorable outcome; the 
well thought-out model of a particular situation 
doesn’t guarantee, obviously, that the outcome 
will be the one you want. It is also true that faulty 
decision-making may be followed by a favorable 
outcome. What DA promises is that if you follow 
its precepts, you will maximize your chances of 
the outcome you favor.

Uncertainty is Inescapable But 
Shouldn’t Paralyze Decision-Making

If diagnostic assignments are crisp, there are no 
problems; the business of DA is uncertainty man-
agement. How might DA handle assignment 
uncertainty? One way to finesse this problem is 
to settle upon a taxonomic model; for example, 
that the region between peaks in the phenospace 
is populated by atypical cases from one or the 
other population and assign a probability to the 
two possibilities [5]. Other models are possible, 
for example, including a third population of “in-
between” cases, a separate and distinct lottery (in 
the language of Chapter 6), and assigning proba-
bilities to three possibilities.

Some Crucial Questions and Other 
Issues Related to Decisions  
in Pathology (Table 10.1)

Is There a Clinically Relevant Decision  
To Be Made?

The Stanford professor, Ron Howard, who first 
coined the term “decision analysis” in the 1960s, 
has often said that the most difficult part of 
 consulting work in DA is discovering whether or 
not the client really does have a decision to make?

“If you have only one alternative, then you 
have no choice in what you do. If you do not have 
any information linking what you do to what will 
happen in the future, then all alternatives serve 
equally well because you do not see how your 
actions will have any effect. If you have no pref-
erences regarding what will happen as a result of 
choosing any alternative, then you will be equally 
happy choosing any one” [4].

Howard was referring to the difficulty in expos-
ing this structure in the typically complex details of 
the client’s specific situation. Often what is required 
is someone to take a bird’s eye view of the situation 
and point out the obvious. Another correlative point: 
DA has nothing to tell us about nonmanagerial dis-
tinctions; there is no clinical decision to be made. 
Scientific classification disputes are discussed in an 
entirely different framework. Histogenetic classifi-
cation issues, for example, involve the scientific 
plausibility of competing embryological theories in 
a particular domain, issues quite remote from clini-
cal decision making.

Table 10.1 Important questions to ask about a problematic 
case

Question 1: Is there a clinically relevant decision to be made?
Question 2: Do I need more information to make this 
clinically relevant decision? The value of information
Question 3: What have I learned from my new informa-
tion? Bayesian updating
Question 4: Would I make a different clinically relevant 
decision if my probabilities were slightly adjusted? 
Sensitivity analysis
Question 5: What’s at stake for this particular patient? 
Cost functions
Question 6: What do I do in the face of assignment 
uncertainty when it makes a clinical difference?
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The Problem of the Burgeoning 
Oncopathological Zoo

Anatomic pathologists face a situation similar to 
that of Howard’s client. The complexity of our diag-
nostic task stems from the hybrid character of onco-
pathological classification – a managerial overlay 
on a much more complicated histogenetic classifi-
cation. We have hundreds of named entities but, in 
any particular domain, these entities fall into only a 
few managerial categories. Many of the named cat-
egories are associated with vague F

Clin
(t) claims 

that probably would not stand up under the kind of 
scrutiny given to cancer markers (Chap. 7). These 
claimed distinctions, nevertheless, persist in the pri-
mary literature and the reviews of that literature. It 
is a major challenge keeping track of the exponen-
tially proliferating neoplastic kinds and critically 
evaluating whether or not they should figure in 
patient care decisions. Molecular kinds will soon be 
making their contribution to this burden. It is at this 
point that the principles set out below become 
important as a way of effectively focusing on one’s 
clinically relevant diagnostic efforts.

Guiding Principles in Clinical  
Decision-Making: What Are We Trying 
to Accomplish for a Particular Patient?

The guiding principle is to doggedly pursue the 
question: What’s the clinical context? What does 
the clinician need to know about the specimen sub-
mitted to get on with the next stage of clinical deci-
sion-making? Let’s look at this more carefully. 
Clinically relevant differential diagnostic sets are 
generated during the course of diagnosis. For exam-
ple, we might initially sort the relevant possibilities 
into a differential diagnosis organized around phe-
notype. We then might sort the members of these 
phenotype sets into three groups: those associated 
with a benign clinical course (“good actors”), those 
with a clinically malignant course (“bad actors”), 
and those with an intermediate clinical behavior. 
Further diagnostic testing should have as a goal 
establishing to which broad category the case 
belongs. For example, when confronted with a high-
grade malignancy in the soft tissues and having 

ruled out mimics (e.g., metastasis, local extension 
from another site, melanoma, hematolymphoid 
malignancy) and established that the tumor is 
descriptively a pleomorphic, high-grade primary 
soft tissue sarcoma, it can be argued that one’s clini-
cally relevant work is done. It remains an open 
question whether fine-tuning this diagnosis (Is it 
dedifferentiated liposarcoma, leiomyosarcoma, 
poorly differentiated synovial sarcoma, etc.?) is 
clinically useful. Once a case can be assigned 
unequivocally to one or the other category, from the 
point of view of clinical action, nothing more need 
be done. If all of the “benign” K

Neop
’s in a particular 

location will be treated the same way and likewise 
for all the malignant K

Neop
’s, further diagnostic 

efforts may be in service of nonmanagerial goals, 
but have nothing to do with clinical decision-making.

The Value of Information: Do I Need 
More Information to Make this Clinically 
Relevant Decision?

The question that should probably drive the elabo-
rateness of the histopathological workup in a cost-
effective environment should be: What does the 
clinician need to get on with clinical workup, 
 treatment? The analysis may be different for dif-
ferent stages of the clinical workup. The answers 
to this question will differ for a needle biopsy of a 
mammographically suspicious lesion or a needle 
biopsy of a retroperitoneal soft tissue mass than 
for the respective resection specimens. The con-
ventional lavish immunohistochemical (IHC) 
workup of a soft tissue neoplasm doesn’t need to 
be performed on the limited sample provided by a 
needle biopsy; it can await the resection specimen. 
For a resection specimen, a more elaborate workup 
is conventional. When should we stop? Do dimin-
ishing returns set in when working up, for exam-
ple, what is noncontroversially a high-grade 
pleomorphic soft tissue sarcoma? EBP has a role 
here in scrutinizing the claimed distinctions 
between the dozen denizens in this particular zoo.

We are painfully aware that standard of care 
consideration often does not reflect this practical 
approach to diagnosis. We may, for various com-
pelling local reasons, respond to these pressures, 
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but, even so, it is valuable to maintain a clear-eyed 
view of the evidentiary warrant (or lack) for these 
decisions. There are some requirements: (1) We 
need to start off with a focused question. For 
example, distinguishing “A” or “B” and what are 
the most discriminating tests to order?; (2) We 
need to know what we will do with possible results. 
For an IHC study, we need to know what we would 
do with a positive or negative or an inconclusive 
result. In short, don’t order the test unless you 
know what you would do with the possible answers 
you might obtain. If you would make the same 
diagnosis given any possible test result, the test 
has a “value of information” of zero; you should 
not have ordered the test. When multiple tests are 
ordered, the “curse of dimensionality” rears its 
ugly head. It is not at all uncommon to receive a 
consult case with twenty or more IHC studies. It 
reminds us that “more information is not necessar-
ily better.” See the  discussion in Chap. 7.

Often, of more value than additional IHC test-
ing is clinical or radiological information. It 
makes no sense to try to leverage the location of 
a uterine  cancer (from cervix or fundus) using an 
IHC panel when a call to the clinician might  settle 
the issue. That’s not to say that there are not cases 
of  cancer centered on the uterine isthmus which 
are  problematic; it’s to argue against the reflex 
ordering of a panel to sort out what might well be 
a perfectly obvious clinical situation. It’s like 
using the degree of actinic elastosis in a skin 
biopsy to ascertain the age of a patient as an alter-
native to looking at the age box in the pathology 
requisition. Again, whether a well-differentiated 
cartilaginous neoplasm of bone is “enchondroma” 
or “chondrosarcoma” is a distinction that the 
radiologist makes, not the pathologist on her 
own; the radiologic findings are constitutive ele-
ments of the final “pathologic” diagnosis.

What Have I Learned from My New 
Information? Bayesian Updating

Bayes Theorem is a trivial algebraic consequence 
of the axioms of mathematical probability. It 
becomes interesting when it is interpreted as a 
formula for learning from experience [2]. Bayesian 

thinking lies at the heart of DA. It tells us how to 
combine what we knew with what we found out 
to discover what we should now believe.

The odds formulation of Bayes Theorem is a 
particularly transparent way of visualizing this 
principle (Fig. 10.1). Diagnostic IHC studies can 
be understood only within this framework. IHC 
yields, in general, a set of likelihood ratios on 
diagnostic possibilities. Learning from some 
combination of test results requires a set of 
“input” prior odds on those possibilities [19].

Independence of Informational 
Evaluations

There are two attitudes assessing a patient’s his-
tology. The first, the integrative view, insists on 
having all the relevant background information 
(clinical history, imaging findings, etc.) before 
evaluating the histology of a case. Opposed to this 
is the attitude, the independent assessment view, 
that the independence of the histologic input 
should be preserved by examining the slides with-
out any of that background information. There is 
truth in both approaches. “Independent assessment” 
is most consistent with Bayesian principles. To 
incorporate the radiological information in one’s 
assessment of histology and in updating using 
both histology and radiology, treated as indepen-
dently evaluated inputs, may lead to “double 
counting” of the radiologic evidence. It is also 
true that no histological assessment should be 
reported without a careful integration of the infor-
mational inputs provided by clinical and radio-
logical features. Ideally, independent assessment 
should be followed by clinicopathological inte-
gration using Bayesian updating.

Would I Make a Different (Clinically 
Relevant) Decision if My Probabilities 
were Slightly Adjusted? Sensitivity 
Analysis

The question how robust is my diagnosis to “wig-
gling” my input probabilities? leads to the con-
cept of sensitivity analysis: How sensitive is my 
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diagnosis under slight changes in my prior odds 
or my likelihood ratios? Would a change in diag-
nosis lead to a different action? Does sensitivity 
to one particular input suggest that I need more 

information to narrow that uncertainty? Do I need 
to perform more tests? These are the basic ques-
tions involved in the decision analyst’s sensitivity 
analysis.

Fig. 10.1 The diagnostic test matrix and Bayes’ odds. The 
unit area probability square provides a particularly intui-
tive representation of Bayes’ theorem. The logical possi-
bilities are color coded in the ‘Logical Space’ on the right. 
Red for true positives, light blue for false positives etc. The 
logical possibility squares are distorted to reflect the prob-
abilities of each of these logical possibilities to produce the 
large probability square on the right. The ‘Priors’ rectangle 
depicts the total probability of true positives/negatives and 
has unit area; the other rectangles (‘Test Characteristics’ 
and ‘Posteriors’) represent conditional probabilities; each, 
of course, have unit area. This is a particularly intuitive 
formulation; it tells how we pass from what we knew prior 
to the test (the prior odds) and what we found out by doing 
the test (the likelihood ratio) to what we should now believe 
in light of that new evidence (the posterior odds). The rule 

is simple: multiply the prior odds by the likelihood ratio. 
The odds form of Bayes theorem can be evaluated visually 
by forming the ratios of the appropriate rectangles depicted 
in the probability space. For example, it is clear that with 
the situation depicted the posterior odds on disease given a 
positive test is roughly 0.5 (the ratio of the red patch over 
the light blue patch in the large probability square. Forming 
each of the ratios (visually) in the product makes this geo-
metrically plausible. Bayesian updating of beliefs is an 
iterative process: the posterior odds can become the prior 
odds of another round of diagnostic tests. Applying this 
rule sequentially by multiplying the likelihood ratios 
makes the simplifying assumption that the tests are condi-
tionally independent; this is usually an unrealistic assump-
tion in most practical situations [39]. Bayesian networks 
can accommodate a feature dependency structure [27]
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What’s at Stake for this Particular 
Patient? Cost Functions

Decision analytic methodology insists on a sepa-
ration of patient utilities from the action and infor-
mation inputs into the process. Pathologists 
sometime engage in scope-side group DA. “How 
can I make a diagnosis of Grade I endometrial car-
cinoma in this 30 year old woman infertility patient 
when I know that the risk to life with such a lesion 
is minimal and that there are treatments short of 
hysterectomy that are sometimes curative?” One’s 
natural impulse is to downshift one’s diagnosis to 
“complex atypical hyperplasia.” Given the same 
pattern in a postmenopausal woman with dysfunc-
tional bleeding, one might have no hesitation in 
making a diagnosis of Grade I adenocarcinoma. 
Locating a process along a graded morphologic 
continuum is one thing; deciding what clinical 
action to take for a particular patient (or class of 
patients) with that histology is another. For 
example, what clinical action is warranted given a 
particular morphological patterns depends upon 
whether one is dealing with a “high penalty hys-
terectomy” situation (reproductive conservation 
important or the patient is a high-risk surgical can-
didate) or a “low penalty hysterectomy” situation 
(reproductive conservation not an issue and patient 
is a good surgical candidate). There is nothing 
paradoxical or mysterious about this; it is a 
straightforward issue of there being different 
“action threshold” along a morphological contin-
uum for different classes of patients.

The basic idea behind managerial threshold 
setting is the cost function. Consider two overlap-
ping bell-shaped curves; we want to determine 
the optimal threshold in the overlap area for shift-
ing from calling cases “A” to calling cases “B.” 
The optimal threshold is one that minimizes the 
total cost of misclassification. The inputs for this 
calculation are (1) the prior probabilities encoun-
tering an “A” or a “B” and (2) the costs that attach 
to errors of the two types: miscalling an “A” for a 
“B” and miscalling a “B” for an “A.” Debate in 
histopathologic diagnosis is often erroneously 
focused on the details of morphology when it 
really is about utilities – anticipating the impact 
of a diagnosis.

This discussion raises a number of lessons: 
First, diagnoses are often not simply a report of 
objective findings, they may be value-laden. 
Second, there is sometimes confusion about who 
should be integrating clinicopathologic informa-
tion to come up with treatment recommendations 
for the patient? A pathologist’s diagnosis may 
amount to a recommendation for treatment rather 
than being a report of an objective finding, an infor-
mational input. Third, it is sometimes not clear 
whose utilities are being reflected in decision- 
making: the patient’s, the pathologist’s, the clini-
cian’s, or the insurance carrier’s. These are difficult 
issues beyond the scope of this discussion.

What Do I Do in the Face of Irresolvable 
Uncertainty in Diagnosis when it Makes 
a Clinical Difference?

In Chap. 6, in discussing problem cases, one of us 
unhelpfully pointed out that it is in the nature of 
I

Neop
’s that problem cases never disappear. I urged 

a philosophical attitude that these cases pointed to 
the inevitable failure of static, discretizing classifi-
cation systems to do justice to evolving processes 
distinguished by their continuous spatio-temporal 
variation. I also pointed out that as one moves from 
“core” cases to cases occupying the “PeTI” region 
(or encounters taxonomically embarrassing het-
erogeneity), several things happen with great regu-
larity: (1) for experts, diagnosis and classification 
collapse into a single activity; (2) experts’ appeal 
to published criteria gives way to arbitrary (but 
often principled) stipulation using noncriterial fea-
tures and (3) interexpert agreement degrades. It is 
further argued in Chap. 6 that, in the absence of 
expert consensus (when in possession of 
 “complete” information), there is no fact of the 
matter about the correct assignment.

That is all well and good, the reader might say, 
but we are still left with the practical issue of diag-
nosing such cases. Here we are only concerned with 
assignments that make a managerial difference. The 
relevant experts will assign nonmanagerial problem 
cases by appeal to one or another oncogenetic or 
histogenetic theory. What about managerially rele-
vant diagnostic decisions? Here the basic strategy is 
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to “look up” from the microscope and ask if the cli-
nician should care about the distinction you are try-
ing to make. First, consider the K

Neop
’s on either side 

of the in-between case. What is the claimed differ-
ence in behavior? The next question to ask is: “Are 
the claimed differences supported by credible evi-
dence?” For example, low-grade serous carcinomas, 
psammocarcinomas, and serous borderline tumors 
of peritoneal origin are all part of a morphologic 
continuum. They are rare and there is limited infor-
mation about their long-term behavior, although 
they all are, relative to the usual serous carcinoma of 
the ovary, clinically low grade. In this case, it is not 
at all clear from the literature that there are substan-
tial differences in the long-term behavior of the three 
(nor, in fact, that mere mortals can follow the experts 
in distinguishing among them) [20]. What is one to 
do with an in-between case in this spectrum?

The next question to ask: “What’s at stake?” 
Even if there are differences in behavior, are they 
sufficient to warrant different therapeutic approaches? 
Debulking is recommended for all three; there is no 
good evidence that chemotherapy is effective with 
these low-grade neoplasms. The issue, then, is 
whether to undertake radical debulking of disease 
(with removal of the internal genitalia) or conserva-
tive debulking, involving preservation of ovarian tis-
sue and the uterus. Next question: “How old is the 
patient?” If reproductive conservation is relevant, 
then debulking with preservation of the uninvolved 
ovary and the uterus is indicated; if not, radical deb-
ulking is the appropriate choice. This would be the 
choice for all three. Thus, in the face of assignment 
uncertainty, attention turns to the pros and cons of 
various clinical options given that all three have 
more or less the same behavior, despite the fact that 
two are labeled “cancer” and the other is not.

The Rubber Band Paradox

The in-between case raises another curious 
 diagnostic practice. A case lies between “A” and 
“B” along a multivariate morphologic continuum. 
After a good bit of extensive testing and hand-
wringing, we decide that the balance of the evi-
dence is for “A.” A standard argument for this 
practice is that the behavior of “A” is substan-
tially different from “B.”

There are a number of ways of making sense of 
this. Here is a pragmatic argument: it may be the 
case that the chemotherapy for A is different from 
the chemotherapy for B or A is treated with surgery 
and B is not. This is all well and good and makes 
decision analytic sense particularly when the diag-
nostic dilemma is expressed probabilistically. That 
is: “I put 0.80 probability on A and the 0.20 on B.” 
A cost function can be developed and an expected 
utility calculation done that issues in a decision.

What doesn’t make sense is to conclude that, 
because you have – after long agonizing and in 
possession of “complete” information – decided 
that it’s an “A” it will behave like the average “A.” 
The rubber band image come to mind because the 
in-between cases “snap” to one or the other mea-
sure of central tendency in the neighborhood, A or 
B in this case. In fact, it is probably more impor-
tant that the case was difficult to classify than that 
it was finally assigned to the “A” category. This 
rubber band move is a covert form of essentialism; 
cases either have an “A” essence or a “B” essence 
and that essence is captured by the measure of central 
tendency (the mean or the median); the variation 
(that the case has strayed into the in-between 
region) is confusing random “noise” that the 
pathologist has now, with his testing, seen through 
to the “signal.” This view conflates random mea-
surement variation with potentially important bio-
logical variation. As the late S.J. Gould put it: 
“The median is not the message!” [21]. It’s impor-
tant to look at the entire distribution, the Full 
House, in making clinical predictions.

The Novel Case and the “Closest Fit” 
Strategy

Just as the “hybrid case” can be thought of as the 
embarrassingly heterogeneous case, the “novel 
case” can be thought of as the embarrassingly 
unique case. These, as might be expected, are rela-
tively common in a consultation practice. The basic 
strategy here is to roam the relevant phenospace in 
search of the “closest fit” and invoke the heuristic 
“Looks like therefore most likely will behave as.” 
Examples include: “Histologically low-grade mes-
enchymal proliferation with potential for local 
recurrence (see learned comment wherein all of the 
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relevant differential diagnostic possibilities are 
considered and serially discarded).”

The Fallible Reasoner: Judgmental 
Psychology

There are pitfalls in intuitive probabilistic reason-
ing; these errors in judgment have been an active 
area of research since the 1970s and a Nobel prize 
in economics was awarded to one of the founders 
of the field, Daniel Kahneman. Space does not 
permit a discussion of this topic, but an important 
element of the EBP program should be a study of 
the relevance of judgmental psychology to 
 oncopathological decision-making. There are 
several accessible introductions to the important 
topic [3, 22–24].

Decision Support Systems

Space does not permit a review of DSS and we 
will only examine these efforts from the perspec-
tive set out in Chap. 6. DSS are basically classifi-
ers that evaluate evidence and classify a situation 
either in service of morphological diagnosis or 
prediction. Diagnostic systems aim to simulate the 
diagnostic performance of experts in the domain; 
they are imitative and attempt to solve the “transla-
tion-transmission” problem set out in Chap. 6. The 
goal of predictive systems is to generate a clinical 
prediction using, what’s been termed in the (DSS) 
literature, “case-based reasoning (CBR).” CBR 
amounts to matching the phenotype of the current 
patient (clinical  features, histological features, 
etc.) with those contained in a database of thou-
sands of patients about whom both phenotype and 
clinical outcome are known. The patient is assigned 
the prognosis of those database patients with the 
closest phenotype match.

Diagnostic Systems

One of the earliest applications of expert systems 
was to the task of medical diagnosis. In the 1980s, 
a very active area of research was the construc-

tion of expert systems – computer-based systems 
that replace or assist an expert in performing a 
complex task. The construction of a diagnostic 
program typically involves “downloading” the 
classificatory vision of an expert in the particular 
domain. This is exemplified by the Pathfinder 
expert system which was designed by David 
Heckerman, then a Stanford Medical student, and 
colleagues to simulate the diagnostic perfor-
mance of expert hematopathologists in diagnos-
ing lymph node pathology [25, 26]. I participated 
in some stages of this work. In its last versions, 
the model contained more than sixty different 
diseases and around a hundred different features. 
An extensive library of images accompanies this 
program. The basic idea was to capture the exper-
tise of a group of academic hematopathologists 
as a Bayesian network. A Bayesian network, or 
belief network, is a graphical model that repre-
sents a set of random variables (nodes) and their 
conditional dependences (by lines connecting the 
nodes). Roughly, this can be thought of as a high-
dimensional joint probability distribution relating 
observed features (both morphological and clini-
cal) to diagnostic categories. Its diagnostic capa-
bilities were evaluated using actual cases and 
comparing Pathfinder’s performance with that of 
the experts who originally provided the expertise 
for the system. Knowledge-based expert systems 
of this sort have not caught on; there is very little 
about them in the literature after 2000. There are 
a number of reasons for this including legal lia-
bility issues for misdiagnoses and compatibility 
with the physicians’ workflow [27]. Very few 
pathologists are willing to spend an hour entering 
data on a problem case; it is a lot easier to send 
the case off to an expert.

Attempts of this sort are, however, of theoreti-
cal interest. In the language of Chap. 6, Pathfinder 
and the like diagnostic systems are an attempt to 
solve the “translation-transmission” problem;  
the translation of the expert’s classificatory vision 
into language and images and its transmission to 
a nonexpert user. We can make a number of pre-
liminary observations, again, using Pathfinder as 
an example: (1) the system reflects a composite 
of several experts’ expertise; realistically, we 
would anticipate that these experts would not 
always be in agreement on a particular case 
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assignment; (2) the system is limited by the 
experts’ knowledge; in particular, the experts’ 
current location along the macrorevisionary 
cycle. This is a real problem for hematopathology; 
classifications change with some regularity; (3) 
the system can be anticipated to have difficulties 
with problem cases. The discussion of Chap. 6 of 
the expert’s private microrevisionary cycles 
emphasized that when confronting problem 
cases, classification and diagnosis collapse into a 
single act. In diagnosing problem cases, the 
expert may depart from a prior rules to make his 
assignment; it appears, on the face of it, unlikely 
that the expert’s diagnostic-classificatory moves 
would be anticipated by a set of conditional prob-
abilities downloaded in a few interview during 
the construction of the program. In short, the 
expert doesn’t know what his criteria will be until 
he encounters the problem case. Again, using the 
language of Chap. 6, we would expect excellent 
performance on “core” cases, but, for peripheral 
terra incognita (PeTI) cases, performance would 
degrade.

Advantages and Disadvantages  
of Predictive Systems  
and Case-Based Reasoning

There is a fundamental problem with population-
based studies – such studies tell us about the 
characteristics of groups, not individuals. Thus, 
while clinical judgment and CBR self- consciously 
attend to the particularity and uniqueness of the 
individual under consideration, population-based 
studies scrupulously strip away all of that detail 
replacing it with a handful of observed features. 
This reductionist move is in service of gener-
ating stable, statistically credible population 
averages. Thus, evidence-based medicine has 
ideologically (and rhetorically) positioned itself 
against anecdotal CBR. The pendulum, however, 
swings!

CBR has become a popular approach to real-
ize the goal “personal prognosis.” CBR involves, 
in the language of Bartels et al., identification 
rather than classification [28]. Classification, the 
partitioning of a domain into classes, involves the 

selection of a relatively small, manageable 
 number of features and representing each case in 
a feature space spanned by those dimensions. 
Limiting the number of features is forced by the 
“curse of dimensionality.” (See Chap. 7 for dis-
cussion) They characterize this as a closed fea-
ture space. Clinical and morphologic prediction 
rules have this character. Identification, in con-
trast, uses as many dimensions as are available to 
establish the identity (or closest fit) to other cases 
in the database. The prediction for that case is 
that of the group of nearest neighbors. This is an 
open feature space.

Montironi et al. describe the role of CBR in 
prognostic support systems:

CBR establishes a prognosis for a particular 
patient, and thus differs significantly from statisti-
cal classification, in which the patient is assigned 
to a group, all of whose members were given the 
same diagnosis. Statistical classification allows a 
prognosis on the basis of what is known for the 
group, for example, a probability to progress or 
survive for a  certain period of time. However, sta-
tistical  procedures are neither usually intended nor 
designed to characterize individuals. For example, 
for a given patient it is not possible to say whether 
the prognostic outlook is poor or better within the 
bounds given for the group. CBR, conversely, is 
designed to provide individual patient prognosis. 
Case based reasoning compares the new case with 
cases from a large database of cases for which the 
clinical outcome is known. From such a database, 
only the most similar cases are retrieved and used 
to predict the outcome. The data may include 
 qualitative and quantitative histopathological 
 feature values, patient anamnestic data, treatment, 
and observed response to treatment, thus providing 
a very detailed characterization of the patient’s 
situation [29].

Except in the most general sense of searching 
for similar cases, the use of CBR is problematic. 
For Montironi et al., it is simply an application 
of the heuristic: “Looks like, therefore will act 
like.” It is certainly a long way off from Osler 
sitting at the bedside puzzling over a singular 
patient, Sigmund Freud probing the psyche of 
Anna O., Sherlock Holmes in his Baker Suite 
rooms, or the other Holmes, Oliver Wendell Jr., 
mulling over issue of precedence in the Supreme 
Court [30].

In the DSS literature, CBR has two features: 
the patient’s phenotype can be characterized 
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using an open-ended number of features and the 
classification rule is: associate this patient’s point 
in the feature space with the nearest (i.e., most 
similar) case(s) in the high-dimensional neigh-
borhood. In mathematical-statistical terms, this is 
a k-nearest-neighbor (kNN) search.

It’s worth recording the differences between 
the folksy examples I provided and a kNN 
search. A few example suffice: (1) the patient’s 
particularity has to be reduced to a set of 
observed features and some subset of those fea-
tures recorded. There are problems in including 
too much (what turns out, in the fullness of time, 
to be “noise”) and too little (missed “signal”). 
Recall the years of our examining peptic ulcer 
surgery specimens and ignoring the Helicobacter 
organisms; (2) the observations have to be 
 preprocessed into a computer digestible form, 
 usually nonfuzzy; (3) a similarity measure must 
be selected from a large number of workable 
metrics (e.g., Euclidean, Mahalanobis). We 
 discovered in Chap. 6 that high-dimensional 
biology is plagued by the “curse of dimensional-
ity”; kNN searches are no exception. The “near-
est neighbor” looses meaning with a modest 
increase in the dimensionality of the data. That 
is, as the dimensionality of the phenospace 
increases the ratio of the distance to the nearest 
neighbor and the distance to the most distant 
neighbor asymptotically approaches unity. See 
Chap. 7 for discussion.

Who Should Be Making  
the Decisions in Oncopathology?

Unguided statistical intuitions are notoriously 
flawed and keeping track, without assistance, of 
the large number of conditional probabilities 
involved in a practical decision-making problem 
is impossible. The evaluation of the tsunami of 
evidence from clinical trials, from genomic stud-
ies, requires, as we have seen, highly special-
ized knowledge from a variety of disciplines for 
which pathologists have little training. The 
futuristic vision of the unaided community (or 
academic) pathologist as integrator of informa-
tion from multiple levels of organization – from 

cancer gene to histopathologic findings to 
F

Clin
(t) – is a fantasy. We’ll need some sort of 

help. There is much debate about who should be 
integrating this growing, complex quantity of 
patient information. Not surprisingly, some 
pathologists argue that it should be the patholo-
gist [31, 32].

However, this issue may be settled, there is no 
question that light microscopy is an essential 
organizing level in cancer management, and 
expertise in histopathology will be required no 
matter what the future holds for the molecular-
genetic dimensions of neoplasia. It is not only 
reasonable but necessary for pathologists to resist 
the methodological imperialism de jour. There 
will be a continuing role for surgical pathology 
oncopathological decision-making in the postge-
nomic age [33–38].
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This chapter explores how to interpret and 
 evaluate information published in the pathology 
literature and integrate it with personal experi-
ence using a systematic approach based on gen-
eral Evidence-Based Pathology (EBP) principles 
[1, 2]. Previous chapters have described some of 
the methodological problems encountered in the 
current pathology literature and have explained 
basic concepts of EBP as a derivative of Evidence-
Based Medicine. Perusal through these materials 
can certainly raise legitimate questions regarding 
whether the “EBP approach” has really intro-
duced new concepts, a topic that is discussed in 
more detail in Chap. 2 [3–8]. As reviewed by  
Drs. Costa and Whitaker, pathologists generally 
believe that most information used in our daily 
practice is based on sound observations, the 
results of evaluating tissue and other body sam-
ples with the latest analytical methods, and the 

use of statistically significant data. It is probably 
not too adventurous to estimate that many 
 pathologists probably view EBP as the “repack-
aging” of information under the catchy “evidence-
based” logo. Yet, if we review the current literature 
from an epistemological point of view and using 
the systematic approach described in this chapter, 
one can argue that the quality of future pathology 
publications could be enhanced by the use of 
more precise methodology that explicitly lists the 
objectives of each study, considers the limitations 
resulting from the characteristics of the materials 
being investigated in the development of conclu-
sions, and analyzes the results with an eye toward 
developing information that is useful for the eval-
uation, diagnosis, and treatment of individual 
patients. Greater awareness of this EBP-based 
process will also hopefully assist pathologists 
planning to perform future studies that would 
yield information that could be applicable for the 
diagnosis of pathological specimens.

Epistemology is the branch of philosophy 
interested in the theory of knowledge [9–14]. It 
promotes the analysis of the nature and limita-
tions of various conceptual paradigms and obser-
vational methods used for the acquisition and 
interpretation of new information. The first 
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 sections of the chapter will review from an 
 epistemological standpoint the study designs that 
are generally being used in pathology research 
and teaching, as exemplified by recent publica-
tions in peer-reviewed journals, using a system-
atic process to evaluate the validity and clinical 
applicability of the results and conclusions of 
these studies. The various comments are not 
intended to judge on the quality of the articles 
selected for review, but to explore methodologi-
cal characteristics and details in an effort to eval-
uate the validity of the results of each study and 
their applicability in current pathology practice. 
The last section of the chapter will introduce the 
problem of how to use EBP principles to inte-
grate the information published in the literature 
with personal data and experience, a topic that is 
described in more detail in Chap. 13 and 15.

EBP Guide to Readers: Is the 
Information Valid and Applicable  
to My Cases?

The scientific method is a body of techniques 
designed for knowledge acquisition, based on the 
collection of data through observation, experi-
mentation, and the formulation and testing of 
hypotheses [15–21]. The goal of the scientific 
method is to seek the truth. However, knowledge 
about elusive “truths” frequently evolves as a 
result of an iterative process where new informa-
tion poses new questions, leading to the genera-
tion of new hypotheses that stimulate the collection 
of additional data that update previous knowledge. 
In addition, knowledge is influenced by beliefs 
held as a result of tradition, education, and various 
cultural, psychological, and sociological factors. 
Beliefs can alter the perception of observations 
and influence the interpretation of data resulting 
in a variety of biases that can distort the validity of 
presumably scientific information. The peer 
review system has been designed to evaluate the 
information and conclusions being presented in 
scientific studies in an effort to prevent the  
dissemination of erroneous information and 
minimize the publication of biased and scientifi-
cally unsound information [20, 22–32]. However, 

as expert reviewers often have their own 
 preconceptions and biases, the fact that new infor-
mation has been reported in the peer review litera-
ture offers no absolute guarantee about its scientific 
value, leaving the reader with the personal respon-
sibility to evaluate the validity of published data 
[30]. In addition, practicing pathologists are likely 
to read the literature with these two general ques-
tions in mind: do these conclusions apply to my 
patients? and what can I learn from this study that 
could be applied to the evaluation of my tissue 
specimens or other laboratory samples?

The systematic EBP-based process listed in 
Table 11.1 can be useful to evaluate the quality 
and clinical validity of the information published 
in the peer review literature and other sources of 
medical data and integrate it with personal expe-
rience for the evaluation of tissue samples and 
laboratory specimens from individual patients. 
The questions listed in the table can then be 
expanded to formulate the more specific queries 
listed in other tables.

Does the Study Include Comprehensive 
and Unbiased Background Information: 
Narrative Reviews Versus Systematic 
Literature Reviews

An initial step during the evaluation of the validity 
of the content of pathology publications is to iden-
tify the methodology used for the selection of per-
tinent background information. Such  information 
from previous literature is frequently used to  justify 

Table 11.1 Systematic evidence-based process to  evaluate 
published information

Does the study include comprehensive and unbiased 
background information?
Does the study list one or more clear hypothesis/es?
What study design is used?
Are the conditions of the study sufficient to test the 
hypothesis?
Are the results of the study internally valid?
Does the study test for the external validity of the 
results?
What is the evidence level of the study results?
What is the applicability of the study results for the 
evaluation and diagnosis of my individual patients?
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the hypothesis being tested in a study, evaluate the 
results, formulate conclusions, and/or integrate 
them with previous knowledge. The methodology 
used to select background information is particu-
larly pertinent when evaluating the content of 
review articles. Unfortunately, perusal through 
multiple articles in the recent pathology literature 
shows that it is generally customary to use a highly 
personalized approach to the selection of refer-
ences and background information [33–36]. 
Authors, presumably based on their own experi-
ence and professional judgment, pick and choose 
selected information from a variable number of 
references usually found in the Pubmed database 
of the National Library of Medicine and do not 
explain why certain publications were included, 
while others may have been excluded by design or 
neglect. As discussed in previous chapters, this 
unstructured process for the selection of back-
ground information does not necessarily provide 
an objective and comprehensive review process or 
assure readers that additional studies that contra-
dict the conclusions of the present study and/or the 
current beliefs of its authors were considered.

Systematic reviews are research summaries 
that use explicit, objective, and well-defined 
search criteria to perform a thorough literature 
search followed by critical appraisal of individ-
ual studies to identify valid and applicable evi-
dence in multiple databases [32, 37–39]. The 
Centre for Evidence-Based Medicine of Oxford 
University and the Cochrane collaboration sug-
gest that  systematic reviews include five sections: 
background, objectives, methods of the review, 
results and conclusions. They also recommend 
seven steps for the preparation and maintenance 
of  systematic reviews, as shown in Table 11.2 
[22, 40–46]. Somewhat ironically, not even 
 systematic reviews are necessarily uniform, as 
there are no widely agreed-upon sets of standards 
for the production of systematic reviews. For 
example, a recent review of 300 studies by Moher 
et al. [47] found that different strategies are being 
used for the preparation of systematic reviews 
and not all are equally reliable.

Data from systematic reviews can be inte-
grated and analyzed with the statistical method of 
meta-analysis, as discussed in Chap. 9.

Does the Study List One or More Explicit 
Hypotheses? What Is the Purpose  
of the Study?

The majority of original contributions in the 
pathology literature include one or more hypoth-
esis, but it can be difficult at times to find the 
description of hypothesis or specific purposes of 
the study in the text of a publication and to fully 
understand why the investigators have selected 
particular approaches to the evaluation of their 
pathologic materials. For example, the recent 
paper by Mahajan et al. [48] is an interesting 
study describing gastric foveolar-type and other 
types of dysplasia in patients with Barrett’s 
esophagus. Reading the article using the system-
atic approach shown in Table 11.1 suggests the 
following questions and answers: (1) Does the 
study include comprehensive and unbiased back-
ground information? It is difficult to answer this 
question as a systematic literature review was not 
performed. (2) Does the study list one or more 
clearly formulated hypotheses? The article does 
not list specific questions to be investigated. The 
Abstract describes the purpose of the paper as 
“The prevalence, diagnostic criteria, and natural 
history of gastric-type Barrett’s dysplasia were 
systematically evaluated in 1854 endoscopic 
biopsies from a cohort of 200 consecutive Barrett’s 
dysplasia patients.” The Materials and Methods 
section of the paper describes the process of find-
ing cases and how they were studied, but does not 
include explicit questions or hypothesis to be 
investigated. The lack of explicit questions or 
hypotheses to be investigated may appear to 

Table 11.2 Seven steps suggested by the Cochrane 
Collaboration for the preparation and maintenance of 
 systematic literature reviews

Formulating a problem
Locating and selecting studies
Critical appraisal of studies
 Evidence levels
Collecting data
Analyzing and presenting results
 Meta-analysis
Interpreting results
Improving and updating reviews
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pathology readers as an unnecessary or redundant 
process, but often leads to questions that cannot 
be answered by the readers and ambiguity in the 
interpretation of data by pathologists other than 
the authors of the study. For example, reading the 
Materials and Methods section of the Mahajan 
et al. paper, we learn that the study included all 
cases of Barrett’s esophagus and dysplasia diag-
nosed at their institution during a particular time 
span using clearly spelled out criteria for the 
intestinal variant of dysplasia in Barrett’s esopha-
gus. In contrast, it is less clear how the diagnosis 
of gastric-type dysplasia was rendered by “simul-
taneous consensus agreement of the two gastro-
intestinal pathologists and pathology resident 
authors.” The paper does include a table with 
diagnostic criteria, but it is not referred to in 
Methods and is not referenced, so is difficult to 
understand whether these criteria were derived 
before or after evaluation of the various diagnos-
tic criteria that were analyzed with statistics. This 
ambiguity can lead to respectful questions such 
as how did they diagnose their cases, or what is 
their “gold standard” other than themselves? 
Indeed, in our opinion, this diagnostic process 
raises the suspicion of a circular reasoning pro-
cess that is not all that unusual in pathology pub-
lications: diagnoses are rendered because lesions 
look in a certain way to authors who then evalu-
ate the prevalence of specific features in lesions 
that they classified in a certain manner. In con-
trast, the formulation of explicit tasks, hypothe-
sis, or patient-centered questions, as proposed by 
EBM and EBP advocates, could have precluded 
some of these problems and perhaps even improve 
on the readability and comprehensiveness of the 
study. For example, the methodology could have 
been structured with definitions and hypothesis 
that could have organized the information as fol-
lows: (1) define foveolar-type dysplasia in the 
presence of explicit histopathologic criteria from 
the literature and not as “unequivocal neoplastic 
epithelium confined to the luminal side of the 
basement membrane,” a definition subject to vari-
able interpretation by readers. (2) Define the cri-
teria for grading dysplasias, with references. (3) 
Discuss whether foveolar-type dysplasia and 
mixed foveolar-type dysplasias should be graded 

in a similar or distinct manner from the more 
common form of intestinal-type dysplasia. (4) 
Test with kappa statistics whether the classifica-
tion and/or grading based on the explicit criteria 
is reproducible among all authors, including the 
residents who are probably not experts in gastro-
intestinal pathologists. (5) Divide the data into 
three groups: pure foveolar-type dysplasia, gastric-
type dysplasia, and both. (6) Evaluate for each of 
these three groups how many cases evolved to 
higher grades of dysplasia and carcinoma. (7) 
Evaluate by dysplasia type and grade how many 
cases evolved to higher grades of  dysplasia and 
carcinoma. (8) Evaluate the time that it took for 
the development of carcinoma, by dysplasia type 
and grade. Evaluation of each of these specific 
tasks could have precluded some of the questions 
suggested in the following section of this chapter 
or suggest specific questions for future research, 
should the currently available clinico-pathologic 
materials be insufficient to provide answers to all 
six topics.

Recent studies have explored the use of this 
proposed approach where specific questions are 
formulated and the study organized to systemati-
cally answer them [49–51]. They are discussed in 
more detail in Chap. 10. It remains to be explored 
whether a more structured study design that 
includes a list of specific tasks or questions 
improves on the quality and readability of pathol-
ogy publications.

What Study Design Is Used?

It can be helpful to understand the type of study 
design used by the authors of a particular publi-
cation in order to estimate the potential validity 
of its results and conclusions [52–55]. In general, 
there are three categories of biomedical research: 
observational, experimental, and evaluation of 
treatment effects [55]. In addition, investigators 
can use meta-analysis to aggregate the results of 
different studies and reconcile differences.

Experimental pathology studies are generally 
designed using adequate control groups and 
tightly controlling the various experimental 
 conditions in order to decrease the influence of 
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covariates in the statistical analysis of the data 
[53, 54, 56]. However, most publications in the 
pathology literature are observational and are 
designed to correlate the relationship between 
laboratory findings or specific pathologic find-
ings detected with histopathology, immunohis-
tochemistry, molecular, and other methods and 
some aspect of disease, such as progression, 
recurrence, or death [57]. Observational studies 
can suggest significant associations between vari-
ables, but cannot generally used to determine 
cause and effect [10, 12]. The results of observa-
tional studies are often influenced by covariates 
that are not independent of each other [58, 59].

Different study designs can be used in obser-
vational studies (Table 11.3) [57, 60, 61]. Cohort 
studies are usually used in epidemiology, but 
have been used in pathology to describe the find-
ings that develop prospectively or retrospectively 
over a period of time in a population exposed to 
putative carcinogens or other environmental vari-
ables [55, 62, 63]. Time-series studies and case-
control studies are more commonly used in 
anatomic pathology [64]. Time-series studies 
investigate the correlation of certain findings with 
the development of others at various points in 
time. The data are best collected prospectively, 
but can be retrospective. In the more commonly 
used case-control study design format, the cases 

are divided into case-subjects and controls. The 
latter study design format can be structured as 
nested case-control studies where the data are 
stratified into various subgroups.

It is our impression that the type of study 
design is not customarily spelled out in most 
pathology publications. For example, if we query 
as to the study design of the Mahajan et al. [48] 
paper, we are not told specifically but surmise 
that is probably a time-series type study where 
certain features were described in a population 
that was investigated using “longitudinal follow-up 
information” [48]. Yet, the “statistical analysis” 
section of the paper does not evaluate whether the 
cohort had enough subjects in each category to 
derive forecasts or explain to nonstatisticians 
whether the statistical tests used to evaluate the 
results were appropriate for time-series type of 
data. The lack of this information leads nonstatis-
ticians to become skeptical whether the study had 
enough subjects in the various dysplasia classes 
to reach clinically significant conclusions. For 
example, the study included “200 consecutive 
Barrett’s dysplasia patients” followed for vari-
able periods of time and up to 8 years. Data were 
collected retrospectively and prospectively. The 
cohort included only 11 cases of pure foveolar-
type dysplasia and 19 with mixed dysplasia types, 
while the majority (n = 170) of cases showed find-
ings of the more common intestinal-type dyspla-
sia. Twelve of the 30 patients with pure or mixed 
gastric-type dysplasia progressed to higher grade 
of dysplasia, while 13 did not progress and 5 
were lost to follow up. Five of the eleven of the 
patients that progressed had mixed type of dys-
plasia. What have we learnt about the prognostic 
significance of pure gastric-type dysplasia in 
patients with Barrett’s esophagus that we could 
use in our practice? The study probably supports 
our previous knowledge that patients with 
Barrett’s esophagus and dysplasia are at a high 
risk of developing malignancy. Is the risk higher 
for patients with foveolar-type dysplasia than in 
patients with mixed dysplasia or intestinal-type 
dysplasia? The evidence in the paper is probably 
inconclusive to answer this question. Does the 
dysplasia grade predict the likelihood of the 
development of malignancy or when a patient is 

Table 11.3 Types of study designs

Observational studies
 Cohort study
  Prospective
  Retrospective
  Time series
 Case-control study
  Nested case-control
 Cross-sectional study
Experimental studies
 Case-control
Treatment studies
Randomized controlled trials
 Double-blind randomized trial
 Single-blind randomized trial
 Nonblind trial
Nonrandomized trial
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most likely to be diagnosed with malignancy? 
The study does not answer this question. 
Although the study describes a carefully evalu-
ated group of patients with dysplasia and Barrett’s 
esophagus, the results do not provide, in our 
opinion, best evidence supporting the conclusion 
that “the recognition of Barrett’s gastric-type 
dysplasia and use of the proposed grading criteria 
should promote better diagnostic classification of 
the Barrett’s neoplasm spectrum.”

As suggested in the previous section of this 
chapter, the use of a more systematic study design 
that included a more explicit description of the 
goals of the study and explored which study 
design was most appropriate to evaluate various 
problems may have precluded some of these 
questions and perhaps temper the conclusions of 
this study.

Are the Conditions of the Study 
Sufficient to Test the Hypothesis?

Clinico-pathologic studies in anatomic pathology 
are frequently difficult to conduct as they are fre-
quently designed to evaluate tissue samples with 
unusual conditions that are hard to collect and 
involve the use of expensive and time-consuming 
tests. It is somewhat surprising that, in contrast to 
the painstaking attention to detail that is routinely 
devoted to the description of the technical analy-
sis of the samples, little publication space is often 
devoted to discussing whether the pathologic 
materials are sufficient in sample size and the 
conditions of a study are adequate to test specific 
hypotheses. In addition, there is a tendency to 
assume that because additional findings are found 
with new methods in various lesions, these find-
ings are of clinical value. These problems are par-
ticularly evident in studies that evaluate the 
diagnostic validity of new and sophisticated diag-
nostic methods. For example, the recent study by 
Brunelli et al. [65] evaluated and beautifully illus-
trated the “Diagnostic usefulness of fluorescent 
cytogenetics in differentiating chromophobe renal 
cell carcinoma from renal oncocytoma.” The 
study evaluated 11 chromophobe renal carcino-
mas and 12 renal oncocytomas “showing  different 

clinical outcomes.” The investigators concluded 
that “the study demonstrates that indeed FISH 
performed on formalin-fixed, paraffin-embedded 
tissue can provide clinically useful information 
more reliably than karyotyping of most of these 
tumors.” Analyzing the study using the epistemo-
logical approach by using the questions suggested 
in Table 11.1, we learn that the study does not 
include a systematic review of the literature, list-
ing of specific hypothesis, or a specific descrip-
tion of the study format. As in the study by 
Mahajan, the lack of a description of the explicit 
purposes of the study can lead to ambiguities. For 
example, readers could argue that 100% of the 
cases were diagnosed as either chromophobe 
renal cell carcinoma or renal oncocytoma using 
histopathology, so what is the diagnostic advan-
tage of using FISH or karyotyping in the cases 
used to derive conclusions? Where is the evidence 
that FISH and karyotyping improved on the spec-
ificity and/or sensitivity of the differential diag-
nosis between chromophobe renal cell carcinoma 
and renal oncocytoma? In addition, as the study 
does not provide correlation between the FISH, 
karyotype, or other findings such as clinical stage, 
prognosis, or other clinical data, what is the evi-
dence that the findings “provide clinically useful 
information”? The paper does not provide data to 
answer these questions and perhaps, more trou-
blesome, does not elaborate on these issues that 
are probably of interest to practicing pathologists 
in its discussion. Indeed, although FISH is appar-
ently better than karyotyping for the evaluation of 
these neoplasms, “uncertainty remains as to 
whether variations in tumor karyotype can pro-
duce confounding results that bring into question 
the usefulness of FISH analysis in distinguishing 
between these 2 tumor types.”

The EBP process being described in this chap-
ter could have obviated critiques to a paper that 
was conducted with exquisite attention to labora-
tory details. For example, the study could have 
been structured around four explicit questions: 
(1) What are the abnormalities that can be found 
with FISH in well-characterized cases of chro-
mophobe renal cell carcinoma and renal oncocy-
toma? (2) What are the abnormalities that can be 
found with karyotyping in well-characterized 
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cases of chromophobe renal cell carcinoma and 
renal oncocytoma? (3) Can FISH or karyotyping 
improve on the specificity of a differential diag-
nosis between renal oncocytoma and chromo-
phobe renal cell carcinoma in difficult cases? (4) 
Which are the FISH and/or karyotyping abnor-
malities that are most helpful to improve the 
specificity of this differential diagnosis in diffi-
cult cases? Formulations of specific questions 
such as these may have suggested to the authors 
the need to include in the study cases that were 
particularly difficult to diagnose and the use of 
some external diagnostic “gold standard” for the 
diagnosis of chromophobe renal cell carcinoma 
such as disease progression or metastasis or the 
opinion of an external panel of experts.

Are the Results of the Study Internally 
Valid?

It is beyond the scope of this chapter to discuss 
in detail the various methodological details that 
can influence the results of observational stud-
ies. Table 11.4 suggests seven questions that can 
help readers evaluate whether the results of a 
study are supported by the data. Most of the 
answers to these questions are discussed in the 
review of the indications and limitations of vari-
ous statistical tests in Chap. 4. An issue that is 
usually not explored in clinico-pathologic stud-
ies in the pathology literature is whether the 
number of samples of various conditions pro-
vides sufficient sample sizes to investigate vari-
ous hypotheses. As explained in Chap. 8, power 
analysis can be used to estimate from prelimi-
nary data the  optimal number of cases to exclude 

the possibility that negative results are not 
 significant to a power of 0.80. Application of 
this methodology to the study of conditions, 
such as thymomas, that are associated with the 
potential to recur or metastasize many years after 
initial diagnosis can yield surprising results. For 
example, a recent study with meta-analysis of 
almost 1,000 thymomas estimated that over 
7,000 cases would be needed to conduct a study 
valid to a power of 0.80 [66].

Does the Study Test for the External 
Validity of the Results?

The conclusions of observational studies in 
pathology are validated by analyzing the results 
collected from relatively small samples with 
descriptive statistical methods. The samples are 
usually samples of convenience which are gener-
ally not selected randomly from the entire popu-
lation of subjects with a particular entity of 
interest [1]. The adequacy of sample sizes are 
usually not estimated. Observational studies per-
formed under these conditions cannot adequately 
estimate whether their results are applicable to 
subjects in other population groups. These prob-
lems can be minimized by collecting large sam-
ples from multiple institutions located in different 
states or countries. Another approach is to test 
the results of a study with another “test sample” 
composed of specimens that were not used to 
derive the conclusions of the study [1, 2, 24]. 
These test samples can be collected retrospec-
tively by dividing cases into two groups, training 
and testing or validation sets prior to the perfor-
mance of the study. The results obtained from 
the training set are tested with “unknown” cases 
in the validation group.

The question as to whether external validation 
of classification results is really needed in well-
conducted observational studies was systemati-
cally explored in an analysis of the classification 
of individual lung cancer cell lines based on DNA 
methylation markers analyzed with two multivari-
ate statistical tests, linear discriminant analysis 
and artificial neural networks [67]. The conditions 
of this study were better controlled than the usual 

Table 11.4 Specific queries to evaluate the internal 
validity of a study

What study design was used?
Is it a prospective or retrospective study?
Were control cases selected appropriately?
Are the sample sizes adequate?
Was power analysis performed?
Were the findings evaluated with the appropriate 
statistical tests?
Do the findings support the conclusions of the study?



196 A.M. Marchevsky and M.R. Wick 

clinico-pathologic study as the cell lines had been 
previously well characterized by other studies and 
therefore there was no question about the correct 
diagnoses. In addition, classification was rendered 
using the “objective” process of collecting data 
with molecular methods and evaluated with multi-
variate statistical methods. Initially, the data from 
all cell lines were included in one data set with 
similar number of cell lines in the two diagnostic 
categories. All cell lines were classified correctly 
in this data set by using selected DNA methyla-
tion markers and artificial neural networks, sug-
gesting that this technology allows for an objective 
diagnosis of these cell lines in all cases. However, 
this conclusion would have been fraught with the 
circular reasoning problem described above of 
classifying cases according to the findings in cer-
tain cases and then concluding that certain vari-
ables contributed to classification of the same 
samples. Indeed, when the data were divided into 
training and test cases and organized into ten dif-
ferent combinations of randomly selected paired 
training and test sets, the results varied consider-
ably from the initial conclusion. The number of 
correctly classified test cell lines dropped from 
100% to 62–87%, according to which combina-
tions of training and test sets were analyzed. The 
latter results suggested that although the technol-
ogy was promising as a method to classify these 
cell lines on the basis of DNA methylation mark-
ers and multivariate statistical tests, larger popula-
tions of cell lines and/or perhaps other molecular 
data were probably needed to derive more robust 
classifications models that would apply more con-
sistently to test cases. If this study would have 
been performed according to the study format that 
is currently being used in most pathology studies, 
evaluating a particular test or tests using all cases 
in one data set, it would have concluded that cell 
lines can be diagnosed with 100% accuracy using 
DNA methylation markers and artificial neural 
network technology. The contrast in results under-
scores the need to validate the conclusions of 
studies proposing new diagnostic criteria using 
validation or test data that were not used to derive 
the classification features.

External validation of results is currently 
 seldom used in the pathology literature and is 

increasingly being used in the oncology and other 
literature [68–70]. New diagnostic criteria are 
usually proposed on the basis of the analysis of a 
particular group of cases and it is assumed that 
other pathologists evaluating other specimens 
could reach similar conclusions, without testing 
this assumption. In our view, this practice can 
result in considerable interobserver variability 
diagnostic problems that increase variability and 
confusion in the literature. For example, a recent 
study reviewing the prognosis of patients with 
idiopathic interstitial lung disease showed that 
the survival of patients with a diagnosis of usual 
interstitial pneumonia (UIP) in the seven studies 
where the survival of these patients was com-
pared with the prognosis of nonspecific intersti-
tial pneumonia (NSIP) cases ranged from 11% 
(4.4–24.9 95% confidence interval) to 58% 
(44.6–70.3) [71]. The survival proportions of 
NSIP patients ranged from 39% (23.3–57.3) to 
100% (85.1–100). The marked variability in 
prognosis may be related to differences in the 
clinical characteristics of patients and variable 
therapeutic modalities in various international 
hospitals, but are so considerable that they sug-
gest that patients with UIP and NSIP are not 
being consistently diagnosed as such by different 
expert pulmonary pathologists. Indeed, a study of 
interobserver variability in the diagnosis of 
chronic diffuse lung diseases with kappa statis-
tics has shown only moderate agreement between 
different investigators diagnosing UIP and NSIP, 
with kappa = 0.590 and kappa = 0.420, respec-
tively [72]. There is a need for better diagnostic 
criteria for the differential diagnosis between 
these two conditions which is applicable to dif-
ferent populations of patients diagnosed by dif-
ferent pathologists.

Chapter 7 discusses the topic of the external 
validity of study results in more detail.

What Is the Evidence Level of the Study 
Results?

As discussed in previous chapters, the standard-
ization of various medical procedures, evaluation 
of “quality” of care, and the “evidence-based” 



19711 Evidence-Based Approach to Evaluate Information Published in the Pathology Literature

rubric are increasingly important processes in 
modern Medicine [73, 74]. Many medical spe-
cialties currently sponsor the development of 
“evidence-based” practice guidelines, but as a 
group pathologists have been slow to adopt a 
similar approach.

EBM advocates have also promoted the use of 
various “evidence levels” (ELs) schemes, gener-
ally aimed at an assessment of the validity and 
clinical applicability of therapeutic procedures 
[74, 75]. For example, a recent book by Straus 
et al. [74] codifies several ELs with level I being 
the best. Level 1a is the label for systematic 
reviews with homogeneity of randomized clinical 
trials (RCTs); level 1b refers to individual RCTs 
with narrow confidence intervals; level 2a denotes 
systematic homogeneous reviews of cohort stud-
ies; level 2b includes individual cohort studies 
including “low-quality” RCTs (e.g., with <80% 
follow-up); level 3a refers to systematic homoge-
neous reviews of case-control studies; level 3b is 
principally represented by individual case-control 
studies; level 4 denotes case series with poor-
quality cohort-based and case-control studies; 
and level 5 is the EL represented by “expert opin-
ion” without explicit critical appraisal or first-
hand generation of data (“first principles”). Other 
comparable EL systems have been published by 
the Cochrane collaboration and similar groups 
[22, 40–45]. Generally, only information obtained 
by RCTs, or systematic review with meta-analy-
sis of homogeneous case-control studies, has 
been considered as evidence in levels 1 and 2. 
Data derived from individual case-control assess-
ments are usually considered to be in level 3 or 
higher, denoting lower quality, because it has 
been shown that such observational studies are 
affected negatively by sources of bias that result 
from patient selection, sample size, distribution 
of data, lack of independent validation, and oth-
ers. Ironically, RCT often use pathologic diagno-
ses as rigid classifiers in their statistical analysis. 
However, such lesions are diagnosed pathologi-
cally by different pathologists or by “central 
pathology review” on the basis of criteria previ-
ously published in EL 3 or “worse” literature.

The ELs that are used for evaluation of clinical 
treatment protocols generally pose a somewhat 

unfair proposition for pathologists [76]. Because 
scientific studies in our specialty do not lend 
themselves to the use of RCT designs, clinical EL 
systems essentially consign most pathology lit-
erature to EL 3 or worse. However, the notion 
that pathologist-generated literature is, at best, 
mediocre undervalues the many contributions of 
our specialty to the body of medical knowledge. 
Indeed, well-designed case series and even some 
seminal case reports published in the pathology 
literature have described new diseases and clini-
co-pathological entities.

The classification of most information pub-
lished in the pathology literature as EL 3 or higher 
using clinical EL scales seems to have little rele-
vance to the particulars of our professional disci-
pline and may act as a disincentive for pathologists 
to improve the quality of the design and interpre-
tation of future studies. The notion that our litera-
ture provides at best mediocre information 
markedly undervalues the many contributions of 
pathology to medical knowledge. Indeed, many 
case reports and case series in pathology have 
provided the initial descriptions of new diseases 
and clinico-pathologic entities. In addition, if 
one accepts the proposition that studies by 
pathologists are only likely to produce level 3 or 
worse evidence, there is little incentive to 
improve on the use of sound EBP principles to 
improve on the design quality of future studies. 
We have proposed a scale of ELs for publica-
tions in pathology and laboratory medicine 
which takes into account the various issues dis-
cussed in this book and is shown in Table 11.5 
[76]. This scale classified as level I the evidence 
derived with well-designed case-control studies 
with external validation of results using prospec-
tive validation sets collected at other institutions, 
meta-analysis of level 2 studies, and expert 
 recommendations based on the latter. Other 
types of observational studies are classified as 
 providing ELs 2–5. There is a need for profes-
sional societies such as the College of American 
Pathologists (CAP), Association of Directors of 
Anatomic and Surgical Pathology (ADASP), 
and others to develop more comprehensive and 
authoritative EL scales to evaluate the quality of 
evidence in the pathology literature.
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What Is the Applicability of the Study 
Results for the Evaluation 
and Diagnosis of Individual Patients? 
Guide to the Integration of Best 
Available Evidence from the Literature 
with Personal Experience

There is little current pathology literature explor-
ing the topic of how to integrate the best available 
evidence with personal experience using EBP 
principles. As discussed before, it is well known 
that diagnostic criteria and laboratory details 
developed at other institutions may not be auto-
matically applicable to others. Indeed, it is cur-
rently required by the CAP accreditation process 
that each institution issues its own technical man-
ual for the performance and interpretation of 
laboratory tests, rather than using external docu-
ments without review and adaptation to local 
practices [77–81].

Table 11.6 suggests some specific queries that 
can be used to guide pathologists integrate best 
available evidence from the literature with per-
sonal experience. The process involves  performing 
a systematic review of pertinent literature, identi-
fication of best available evidence and estimation 
of ELs, accrual of cases of personal experience, 
and test whether the recommendations in the  

literature apply to local cases and under what 
conditions. This EBP-based methodology was 
recently applied in a study “Evidence-based 
evaluation of the risks of malignancy predicted 
by thyroid fine needle aspiration biopsies” [82]. 
A National Cancer Institute (NCI) “Thyroid 
Fine-Needle Aspiration (FNA)” State of the 
Science Conference proposed in 2008 standard-
ized nomenclature and “risks of malignancy” 
associated with various diagnostic categories. 
Six categories were proposed for the diagnosis of 
thyroid FNAs: benign, follicular lesion of unde-
termined significance (FLUS), follicular neo-
plasm, suspicious for malignancy, malignant, and 
nondiagnostic [7]. With the exception of nondi-
agnostic, each category in the proposed thyroid 
FNA classification scheme was associated with a 
“risk of malignancy” derived from data collected 
from the literature [8–12]. In the NCI publica-
tions, the risks of malignancy reported to be 
associated with the benign, FLUS, neoplasm 
(follicular neoplasm or Hurthle cell neoplasm), 
suspicious for malignancy, and malignant cate-
gories were <1, 5–10, 20–30, 50–75, and 100%, 
respectively [7]. We performed a systematic lit-
erature review and evaluated our experience with 
879 thyroid FNA. Interestingly, the manuscript 
was initially written using several specific ques-
tions as explained above, but this did not conform 
to editorial guidelines. Systematic literature 

Table 11.5 Proposed scale of evidence levels for publi-
cations in pathology and laboratory medicine

Level 1  Case-control studies with external validation 
of results, using prospective validation data 
sets from other institutions
Meta-analyses of level 2 studies
 “Expert” recommendations based on 
meta-analyses of level 2 or 3 studies

Level 2  Case-control studies with validation of results, 
using prospective validation data-sets from 
the same institution
Meta-analyses of level 3 studies
 “Expert” recommendations based on a 
systematic review of literature without formal 
meta-analyses

Level 3  Case-control studies with validation of results 
using retrospective validation data sets from 
the same institution

Level 4 Case-control studies without validation
Level 5  Case series without controls, or individual 

case reports

Table 11.6 Specific queries to evaluate what is the 
 applicability of the results of a study for the diagnosis and 
prognostication of individual patients

What prior knowledge and beliefs do I have regarding 
the topic being investigated in this study?
How can I use the results of the study for the patho-
logic evaluation of my patients?
Can our laboratory perform the tests reported in the 
study?
What is the sensitivity and specificity of the results?
What are the positive and negative predictive values of 
the results?
What is the incremental diagnostic value of the 
proposed new tests?
How accurate is the prognostic information being 
offered by the results of the study?
How useful is the prognostic information offered by the 
results of the study for the treatment of our patients?
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review yielded mostly EL 3 information with 
malignancy risks calculated on the basis of surgi-
cal follow-up. As clinical findings other than 
FNA results are considered during the selection 
of patients with a thyroid nodule that should 
undergo thyroidectomy, we calculated our malig-
nancy risks using other denominators, such as 
total number of cases, patients with FNA follow-
up, and others. Analysis of our data yielded vari-
ous relative risk estimates and showed that, as 
suspected, the risk estimates proposed by the NCI 
group of experts probably overestimated the 
probability of thyroid malignancy for patients 
with FNA diagnoses of “benign” and “follicular 
lesions of undetermined significance.” In contrast 
for patients with FNA diagnosed as malignant or 
suspicious for malignancy, the malignancy risks 
in our population were similar to those in the 
literature. Our data also showed that in our patient 
population, the FNA diagnoses could be grouped 
from five categories other than nondiagnostic to 
three diagnostic categories, “benign,” “FLUS + 
neoplasm,” and “suspicious + malignant,” which 
provided nonoverlapping risks of malignancy. A 
more recent study showed that the three-category 
diagnostic scheme for thyroid FNA also decreases 
interobserver diagnostic variability among differ-
ent cytopathologists.

Meta-analysis can also be used to integrate the 
results from the literature and personal experi-
ence, as exemplified by recent studies of thymo-
mas, discussed in more detail in Chap. 15.
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In 1996, I argued that cell pathology for the 
twenty-first century needed a more rigorous evi-
dence base for its three key components: sam-
pling, morphological diagnosis, and report 
communication [1]. I suggested that the criteria 
used in each component should be based on evi-
dence which showed the component to be both 
reproducible (for example, as in kappa value) and 
relevant, as expressed by an appropriate measure 
of accuracy in predicting clinical status (for 
example, sensitivity and specificity).

At that time, the evidence base for these crite-
ria in the great majority of diseases was often 
rudimentary. Since then, there has been a major 
expansion of knowledge in many of the areas, 
although there is still much to be done. More 
importantly, understanding what is needed in 
terms of methodology to establish the evidence 
base was only beginning to be defined 15 years 
ago. Much work has been done on establishing 
standards for the reporting of diagnostic tests – 
for example, STARD (Standards for Reporting of 
Diagnostic Accuracy) [2] – and on how to assess 

the quality of the literature on diagnostic tests 
[3], although wider dissemination is needed.

Despite these advances, there is still a consid-
erable gap between the depth of the evidence 
base used in, for example drug therapy, and that 
used in cell pathology. Thus, for example, clas-
sification of types of evidence into various levels, 
to rank the quality of research used to analyze 
a particular problem, has been a fundamental 
aspect of evidence-based medicine. These levels 
are well accepted and increasingly widely used in 
evidence-based therapeutics, but there are cur-
rently no uniformly accepted definitions of levels 
of evidence for evidence-based cell pathology. 
There have been several proposals and, for exam-
ple, the Royal College of Pathologists (RCPath) 
datasets for cancer (http://www.rcpath.org/index.
asp?PageID=154, see below) use a modification 
of the Scottish Intercollegiate Guidelines Network 
(SIGN) (http://www.sign.ac.uk/guidelines/fulltext/ 
50/index.html) guidelines. These guidelines have 
much in common with those of the GRADE 
group (Grading of Recommendations Assessment 
Development and Evaluation) [4], particularly in 
their emphasis on patient-related outcomes, in 
addition to study design. In addition, by analogy 
with drug research, Gludd and Gludd [5] have pro-
posed that studies in evidence-based diagnostics 
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should have four phases, with phases III and IV 
determining the impact on patient outcome.

Unfortunately, however, the great majority of 
research in cell pathology, aimed at establishing 
how relevant a particular feature is in diagnosis, 
prognosis, or management, consists of retrospec-
tive, cohort studies, with no controls, frequently 
with small numbers and often of relatively short 
duration. Randomization and external validation 
are very rare, as are power calculations to assess 
whether the size of the study is sufficient to deter-
mine the statistical significance of a particular 
result. In the therapeutic field, such types of stud-
ies would be judged as among the lowest levels of 
evidence and carry proportionately little weight. 
This relative lack of rigor is a result partly of the 
still-developing nature of the methodology, and 
also of the inherent difficulty of designing, in cell 
pathology, the equivalent of a therapeutic ran-
domized trial. Despite this, cell pathology needs 
to establish evidence levels of equivalent rigor to 
those used in evidence-based medicine and apply 
them with the same degree of universality.

In this chapter, I shall concentrate mainly on 
research from UK and Europe, which over the last 
15 years has explored the development and appli-
cation of the evidence base to each of the three 
key areas of cell pathology mentioned above. I 
shall largely, but not exclusively, use carcinoma, 
especially colorectal carcinoma, and hepatic 
pathology as exemplars from a much wider range 
of examples to illustrate the developments.

Sampling

As we all know, you can be using the most sophis-
ticated diagnostic test available, but if the tissue 
you are provided with is not from the appropriate 
region, then the test is useless. So what is the evi-
dence base for optimum sampling of an organ to 
establish accurate diagnosis and to guide prog-
nostication and therapy?

One of the most systematically analyzed areas 
in this field is sampling in relation to malignancy. 
Over the last 15 years or so, there have been con-
centrated efforts to establish a better evidence base 
for appropriate sampling of a large variety of 
tumors. In the UK, one of the most complete of 

these evidence bases is a series of publications by 
the RCPath on data sets for tumors (http://www.
rcpath.org/index.asp?PageID=154). Currently, the 
RCPath has produced over 30 such data sets which 
cover most of the common tumors. There are 
strictly defined rules on how the dataset should be 
organized, what issues should be addressed, and 
what types of evidence are acceptable. The aim of 
these data sets is wider than sampling, but signifi-
cant parts of the protocols are focused on defining 
which parts of a tumor, including resection mar-
gins, should be sampled for accurate diagnosis, 
staging, prognostication, and guidance of therapy.

As an example of the approach, one of the 
most intensively studied areas is the adequacy of 
sampling in colorectal cancer (CRC). One com-
ponent of this is the evidence that involvement of 
tumor in the nonperitoneal surgical margin – 
 previously called the circumferential or radial 
margin – is a strong predictor of local recurrence. 
This has resulted in clear acceptance that this 
margin must be identified and sampled and, if 
positive, additional therapy such as radiation or 
chemotherapy, instigated.

However, despite the fact that there have been 
concerns about this issue for many years, the evi-
dence of how best to identify and sample these 
margins is relatively recent. Thus in 1986, Quirke 
et al. [6], in a prospective analysis of 52 cases 
with a median follow-up of 23 months, showed 
clearly that those tumors with spread to the lat-
eral margin, as identified by whole-specimen 
mounting and 5–10 mm serial tissue-sectioning, 
were very strongly associated with local  recurrence 
– 92% specificity, 95% sensitivity, and 85% posi-
tive predictive value. In this paper, the proportion 
of local recurrences in a retrospective control 
group of 52 stage- and grade-matched patients, 
followed up for a median of 90 months, who had 
been staged as negative for lateral margin involve-
ment by routine sampling, was the same as in the 
patients who had been staged as positive by serial 
sectioning. This clearly indicated that routine 
sampling was not detecting most cases of lateral 
margin involvement.

Subsequently, Ng et al. [7] published a 
 prospective cohort study of 80 cases of rectal 
 carcinoma with median follow-up of 26.6 months. 
They used whole-mounting and serial sectioning 
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at 5–8 mm intervals. After uni- and multivariate 
analysis, clearance as determined by this type of 
examination was one of three pathological fea-
tures which independently related to prognosis. 
Interestingly, a proportion of tumors which were 
staged as fully excised by this method suffered 
recurrence. While there are several possible 
explanations, this may suggest that sectioning at 
5–8 mm is too great an interval, but to my knowl-
edge, this has not been assessed.

Although these papers, and many others pub-
lished on this topic, clearly indicate the impor-
tance of sampling the nonperitoneal margin 
properly, in general, they are of short duration 
and are cohort studies, with small numbers and 
no randomizing, and as such provide relatively 
low-level evidence to support their hypothesis. 
Furthermore, although the original papers were 
published over 20 years ago, it is clear that inad-
equate sampling is still widespread. Thus, for 
example, while it has been estimated that, using 
the technique outlined above, on average, one 
would expect to find evidence of extramural vas-
cular invasion in 30% of cases of CRC, in a paper 
from 2007, Quirke and Morris [8] stated that, in 
practice, pathologists only report this finding in 
around 10% of cases.

Another important area of research into opti-
mum sampling has been the attempts of recent years 
to identify what sampling is necessary to establish, 
with acceptable degrees of certainty, the presence or 
absence of secondary deposits of tumor in regional 
lymph nodes (LN). This work has largely dealt with 
the number of nodes to be sampled, what micro-
scopic sampling should be performed, and the ana-
tomical location of these nodes.

Until relatively recently, there was no evidence-
based advice on the number of nodes which need 
to be sampled to provide reasonable certainty 
about the presence or absence of metastases. The 
expectation was that as many as could be found 
were examined. Interestingly, in the 1990s, the 
average number found in CRC was around 6 per 
case [8]. Now for many tumors, specific numbers 
of lymph nodes are recommended. Thus, for CRC, 
at least 12 lymph nodes are recommended (http://
www.rcpath.org/index.asp?PageID=154).

However, what is the evidence for this? Since 
1989, when Scott and Grace [9] investigated the 

use of fat clearance as a method of improving 
lymph node recovery in CRC, several papers have 
examined the relationship between the total num-
ber of LN recovered and the likelihood of identi-
fying metastases in these nodes. In 2003, Swanson 
et al. [10] undertook a retrospective analysis of 
the National Cancer Data Base (which is a pro-
spective database of more than 260,000 cases of 
colon cancer in the USA) to correlate clinical out-
come with number of LN examined by the pathol-
ogist. They showed that less than 8 nodes were 
inadequate to assign node-negative status to a T3 
tumor, while conversely identification of 13 nodes 
was sufficient to stage a tumor as node-negative. 
Subsequently, there has been considerable 
research around this topic supporting this view – 
see systematic review of this area [11].

However, there are dissenting views. A recent 
publication [12] suggested explanations other than 
more accurate staging for the association between 
higher lymph node numbers and better outcomes. 
Indeed, a paper from 2002 [13], using mathemati-
cal modeling, suggested that, for early-stage 
colonic tumors, more than 30 LNs need to be 
examined to ensure 85% probability of true nega-
tivity, whereas examining 12 nodes gives only a 
25% probability in T3/4 tumors. In addition, given 
that between 1998 and 2001, fewer than 50% insti-
tutions in the US (involving only 44% patients) 
adhered to the current guideline of 12 LN [14], this 
makes the achievement of a larger LN harvest both 
a high priority and highly problematic.

A related and arguably more important factor 
in lymph node analysis is the detection (or not) of 
metastases. Indeed, what is the evidence of how 
best to detect metastatic tumor in a LN?

Despite the crucial importance of this aspect 
of tumor pathology, extraordinarily, there is no 
agreed evidence-based protocol. There is much 
variation in the methods used by pathologists, 
ranging from simple bisection and embedding  
of each half, face down, followed by a solitary 
H. and E. section, to the examination of multiple 
and even serial levels with immuno-histology or 
molecular analysis for carcinoma cells. These lat-
ter approaches have shown that the occurrence of 
metastases is often missed by less intensive 
examination and thereby that they can convert a 
tumor to a higher stage [15].
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Putting aside the controversial issue of whether 
detection of micrometastases (as in breast carci-
noma) is associated with poorer prognosis – for 
which there is an extensive and somewhat contra-
dictory literature – most of these techniques are 
too labor-intensive for routine examination of a 
large numbers of nodes and so several recent 
papers have proposed focusing on the sentinel 
nodes and subjecting them to intensive sampling. 
Protocols involving elaborate modeling of dis-
section and sectioning of the sentinel node 
(involving, for example, many sections and 
immunochemistry) have been proposed, but to 
do this in a truly evidence-based manner – 
 prospectively, at appropriate power, with external 
validation – even for breast carcinoma, would 
take tens of thousands of patients and at least 10 
years [15]. This latter paper recommended that 
an achievable aspiration would be to use a less 
comprehensive, but a statistically valid sampling 
method, with standardized protocols for evalua-
tion and classification of metastases and correlat-
ing these to clinical outcomes in a population-based 
registry or national cancer database.

Outside the arena of malignancy, there has 
been some investigation of the more general 
problem of sampling. In the liver, where a needle 
biopsy represents between a 30,000th and 
50,000th of the organ, the question is, how repre-
sentative is such a small proportion?

One way of addressing this question has been 
by performing two or more biopsies (either from 
the left and right lobes or by performing multiple 
passes from the same biopsy site) in a variety of 
conditions and comparing the appearances. This 
has shown variation in the appearances of the dif-
ferent biopsies. Thus, in noncaseating granulo-
mas, over 50% of the multiple biopsies failed to 
show the abnormality, and in cirrhosis, 25% of 
biopsies did not show the lesion [16]. For such an 
important diagnosis, this is extremely worrying. 
Similarly, in focal diseases such as Primary 
Sclerosing Cholangitis, there was considerable 
discordance between the two biopsies – advanced 
disease was missed in 40% of biopsies and cir-
rhosis in 37% [17].

A related aspect is the adequacy of the amount 
of material obtained, whether by one or more 

passes. Again, the question is what is an adequate 
amount of tissue to provide a reasonable sample?

Several papers [18, 19] have examined the 
effect of variation of length of a liver biopsy on 
the grading and staging of inflammation and 
fibrosis in chronic viral hepatitis. Thus, Colloredo 
et al. [19], by masking increasing fractions of a 
biopsy, showed that as biopsy length decreased, 
mild grading increased – mild grade increased 
from 49.7% in tissue equal/greater than 3 cm, to 
86.6% in a 1 cm long portion of the same biopsy. 
Similarly, the proportion of biopsies showing 
mild fibrosis increased from 59% in 3 cm biop-
sies, to 80% in 1 cm biopsies.

Bedossa et al. [18], using the METAVIR scor-
ing system for fibrosis, image analysis, and vir-
tual biopsies of increasing length, showed that 
increasing length from 15 to 25 mm decreased 
the coefficient of variation of fibrosis from 55 to 
45%. To reach a CV of 25% required a biopsy of 
over 80 mm and increasing beyond this did not 
produce further reduction. A 15 mm biopsy cor-
rectly assigned the METAVIR score in only 65% 
of the biopsies, which increased to 75% in 25 mm 
biopsies. Further increase in length did not result 
in further improvement. In view of this, the 
authors recommended a biopsy of 25 mm length 
as the minimum length for fibrosis assessment.

As a result of analyses such as the above, there 
has been a consensus for some time that a liver 
biopsy of at least 20–25 mm length and contain-
ing at least 11 complete portal tracts is the mini-
mal size needed for adequate assessment – this 
despite the fact that such biopsies are, at best, still 
nowhere near 100% accurate. Amazingly, the 
evidence is that even these sizes are not routinely 
achieved [20] and that this situation still persists. 
Thus, a recent paper [21] retrospectively reviewed 
163 biopsies in a tertiary referral hospital in the 
UK and found that the median length was 
13.3 mm (range 5.6–50 mm) with a median of 4 
complete portal tracts (range 0–18).

Almost certainly part of this failure to obtain 
adequate biopsies reflects concerns about 
increased adverse complications resulting from 
increased sample size and passes. For this reason, 
trans-jugular liver biopsy, with four passes, has 
been suggested as a safer and more effective 
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method of liver biopsy, producing material of 
adequate size and volume [22]. Curiously again, 
despite the evidence supporting this approach, it 
is not the norm, suggesting therefore that inade-
quate diagnoses are widespread. Why is this? 
Could it be that ignorance of the problem is the 
main reason, rather than safety concerns.

Summary

As can be seen from the above, the evidence base 
for valid sampling of many organs has still to be 
fully established. However, irrespective of the 
complexities and divergent views, the key mes-
sage is that evidence-based methodologies for 
determination of the best methods of sampling – 
whatever the organ or disease – are available and 
can be used to establish the necessary guidance 
for the twenty-first century.

Morphological Diagnoses

Examining the microscopic features of tissue to 
obtain a diagnosis is the cornerstone of cell 
pathology, and in many instances, is regarded as 
the gold standard. To be acceptable in the twenty-
first century, where molecular signatures are 
being developed, the microscopic features which 
rule in or rule out a particular diagnosis should be 
reproducible and relevant. Yet, when one exam-
ines the evidence base for these two components 
of cell pathology diagnosis 150 years or so after 
Virchow, it is still surprisingly limited.

Reproducibility

Reproducible means that when several patholo-
gists look for a particular morphological feature, 
they should all reach the same conclusion about 
its presence or absence (interobserver reproduc-
ibility) and when the same pathologist looks for 
the feature on different occasions (intraobserver 
reproducibility), again she/he agrees about its 
presence or absence on those different occasions. 
Reproducibility is usually measured by kappa 

value, although this method of statistical analysis 
has some weaknesses [23].

Reassuringly, measurement of reproducibility 
of pathological features is being used with 
increasing frequency in a wide range of diseases 
and organs. Depressingly, when applied to many 
of the time-honored and traditional morphologi-
cal features used in tissue diagnosis, these fea-
tures are often so poorly reproducible between 
pathologists as to undermine the basis of their 
continued use [1].

In liver for example, several papers [24–26] 
have examined the inter-/intraobserver reproduc-
ibility of the inflammatory and fibrosis compo-
nents of the various scoring systems. Almost 
universally, the inflammatory components have 
kappa values which, at best, are fair, while in 
comparison, fibrosis scoring is regularly more 
reproducible. This in [24] the kappa value for 
periportal necrosis was 0.36, for lobular necrosis 
was 0.38, and for portal inflammation was 0.25, 
while the kappa value for fibrosis was 0.78.

Here, inflammatory features thought to be 
important for diagnosis, prognosis, and manage-
ment are so relatively poorly reproducible that 
they probably cannot be trusted. Despite this, and 
although scoring systems are recommended only 
for clinical trials, on occasions they are used in 
clinical service and therapeutic decisions influ-
enced by them. It would be interesting to know 
what patients think of this rather unsatisfactory 
situation.

How do we improve this? One approach is 
clearer and more precise definitions of the abnor-
mality concerned (as in IgA nephropathy – see 
below). Another method is the use of “good 
example” images which can be visualized on a 
computer screen and compared by the patholo-
gist to the image she/he is seeing down their 
microscope. The pathologist picks the “good 
example” which best fits his/her own microscopic 
image to identify the presence or absence of a 
particular microscopic pathological feature. Such 
technology can also be combined with a comput-
erized decision support system (DSS) (based on 
Bayesian belief networks) not only to measure 
and improve reproducibility, but also to provide a 
teaching tool.
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To illustrate this, a recent paper [27] described 
this process in cervical pathology. The authors 
selected eight morphological features (evidence 
nodes) which were linked to five final diagnoses 
(decision nodes) via a conditional probability 
matrix. The latter gives a numerical probability 
of the likelihood of finding a particular feature 
in a particular diagnosis (for example, severe 
basal cell nuclear pleomorphism in normal 
equals 0.01).

How does this work? In practice, the observer 
views a biopsy and classifies each of the eight 
morphological features by comparing the micro-
scopic image with the on-screen image. To do 
this, she/he positions a sliding pointer on the 
spectrum of images which most closely resem-
bles the image seen down the microscope. The 
software automatically calculates a likelihood of 
finding the particular feature in each possible 
diagnosis. After all the features have been scored, 
the diagnosis with the highest probability is the 
final diagnosis. A cumulative probability graph 
is generated which shows the changes in likeli-
hood of diagnosis as each morphological feature 
is assessed.

The system was tested on 50 colposcopic 
biopsies selected to have the full range of diag-
noses and tested on two experienced patholo-
gists, two trainee pathologists and two medical 
 students. Intra- and interobserver reproducibil-
ity were measured using a weighted kappa value 
(weighted such that more serious differences 
are given greater weight), with and without use 
of the DSS. This showed that while intraob-
server reproducibility was the same in both 
approaches, interobserver reproducibility for the 
consultants improved from a 0.46 to 0.54 using 
the DSS.

Perhaps more importantly than modestly 
improving interobserver reproducibility, the sys-
tem allows comparison between individuals in 
their analysis of each feature and is thus an 
invaluable teaching tool. It also potentially 
allows, with relative ease, assessment of a par-
ticular feature by large numbers of pathologists 
of variable experience and competence. This will 
allow more informed selection of which features 
should be used in a diagnosis and abandonment 
of those that are insufficiently reproducible.

Relevance

In contrast to reproducibility, by relevant, I mean 
that the presence of the feature in question indi-
cates likelihood of presence of a particular dis-
ease or clinical outcome, the degree of likelihood 
being expressed numerically. The latter is usually 
described as accuracy of diagnosis and there are 
several ways (all of which have particular merits 
and demerits) in which this can be described – 
sensitivity, specificity, positive and negative pre-
dictive values (PPV, NPV), odds, and hazard 
ratios – for the disease in question (see elsewhere 
in this book for definitions). The methodologies 
for determining the sensitivity, specificity, PPV, 
NPV, odds, and hazard ratios for any feature are 
well established. Of these, while sensitivity and 
specificity are being used in the cell pathology 
literature with increasing frequency, the other 
methods of measuring accuracy are used much 
less frequently.

However, there has been one recent example of 
an evidence-based approach to morphological 
diagnosis which combined assessment of both the 
reproducibility of the pathological features and 
their accuracy in predicting outcome. This is the 
Oxford classification of IgA nephropathy [28].

The authors of the paper wished to establish 
which of the pathological features of IgA neph-
ropathy best correlated with clinical outcome, 
independent of treatment or other factors. To do 
this, they initially agreed a list of what morpho-
logical features can be present (divided between 
glomerular, tubulo-interstitial, etc.), agreed spe-
cific definitions – for example, extra capillary 
proliferation or cellular crescent is “extra capil-
lary lesion comprising cells and extra-cellular 
matrix, with less than 50% cells and less than 
90% matrix” – and tested these morphological 
features for reproducibility among themselves.

On the basis of these results, they refined their 
definitions and divided the features into several 
groups according to kappa value – high reproduc-
ibility, kappa value greater than 0.6, moderate 
reproducibility, kappa 0.4–0.6, and poor reproduc-
ibility, less than 0.4. The latter features were then 
excluded from further consideration. Twenty-four 
features were scored, and of these, fourteen were 
either high or moderately  reproducible. The authors 
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then established what correlations there were 
between each of these features (correlation coeffi-
cients) and selected one feature as representative of 
each correlation group, for subsequent analysis. 
The selection was based on reproducibility, ease of 
identification, and susceptibility to sampling error. 
This resulted in six features being identified as the 
evidenced-based pathological lesions of IgA 
nephropathy.

In an accompanying paper [29], the authors 
then performed analyses of the correlation of the 
selected pathological features with a variety of 
clinical features (for example, proteinuria, GFR, 
mean arterial pressure) and outcomes (for exam-
ple, rate of decline of renal function, survival with-
out dialysis). They then determined a measurement 
of the accuracy which the pathological feature had 
for a particular clinical feature/outcome.

Thus, the pathological features which had been 
shown to be reproducible were analyzed by uni- 
and multivariate analysis for correlation with clini-
cal features and outcomes. For some of the 
pathological variables (continuous variables with 
skewed distribution), Receiver Operating Curves 
(ROC) were constructed to determine optimal cut-
offs between positive or negative results. Hazard 
ratios were calculated, as were odds ratios.

The final result was a recommendation that 
four microscopic features should be assessed and 
given a score, each providing an independent, 
evidence-based, measure of likelihood of pro-
gression of disease.

While this investigation was a retrospective 
observational study with variable sourcing of 
data, it is a relatively rare example of a rigorously 
evidence-based analysis of the reproducibility of 
the microscopic features of a disease and how 
they predict clinical outcome. The authors recog-
nized that validation in an independent prospec-
tive study, with data collected in a uniform 
manner, is necessary for confirmation of their 
findings, but the basic approach is a model for all 
histopathology in the twenty-first century.

Summary

Morphological diagnosis is the beating heart of 
cell pathology, but when examined systematically, 

many of the features we assess have relatively 
poor reproducibility and inadequate assessment 
of their relevance to clinical outcome. However, 
as in sampling, we know how to tackle these 
issues and improving this situation can be 
addressed by a long-term, systematic commit-
ment to generating quantified data on the repro-
ducibility and accuracy of the pathological 
features of each disease, along the lines of the IgA 
nephropathy papers.

Report Communication

As I said some 14 years ago, there has been very 
little research into the evidence-base of the best 
format for the composition of the cell pathology 
report. Since then, there has been a considerable 
move towards data sets, especially in cancer 
reporting (see above). Such data sets are struc-
tured as a proforma to list all of the features 
thought to be relevant to diagnosis, prognosis, and 
management, the role of the pathologist being to 
fill in the appropriate measurement and/or com-
ment. The rationale behind such forms is twofold: 
first, by listing all relevant factors, the report 
should therefore contain all the information 
thought to be important. Second, by minimizing 
free text, it reduces the possibility of misinterpre-
tation of the report by the clinician or patient.

Two questions arise from this transformation of 
the report format. First, has the completeness 
of the reporting increased? Second, have the new 
formats increased/decreased communication 
between the pathologist and clinician?

In answer to the first question, a number of 
papers have examined this question and generally 
the answer is yes. Thus in CRC, in one department, 
the completeness of the reported data set improved 
from 0 to 96% [30], while a randomized prospec-
tive study of the use of computerized proforma 
reports in 16 hospitals in Wales, for breast and 
CRC, involving over 2,000 reports, showed a 
28.4% increase in completeness of reports, in com-
parison with nonproforma reports [31]. However in 
this latter study, 31.2% of the CRC reports still 
were incomplete for core data. At one level, this 
seems extraordinary. Why would information 
which is thought to be important not be reported? 
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Of course, some of this may simply be forgetting to 
fill in relevant section, perhaps because of pressure 
of work. Alternatively, it may be that the data are 
not easy to elucidate or that the pathologist does 
not (at least subconsciously) believe that the infor-
mation is truly relevant. Presumably such causes of 
incompleteness can be addressed, at least in com-
puterized reporting, by ensuring that the report can-
not be signed off if data points are still missing. 
However, there has been little research into the 
causes of the missing information. Until this has 
been properly researched, it cannot be said that the 
evidence-base for the most effective report com-
munication has been established.

What about the second question – has the 
adoption of data set reports improved the inter-
pretation of pathology findings by the clinician?

There is essentially no quantified research on 
this matter. In the study from Wales [31], surgeons 
greatly welcomed the reconfiguring of reports into 
this type of format. Anecdotally and from personal 
experience, similar views have been expressed, but 
hard evidence that this has improved communica-
tion and decreased mistakes does not exist at pres-
ent. It could be argued either that this is so 
self-evident that formal confirmation is not needed, 
or that, as the great majority of cell pathologists 
participate in meetings with the clinicians, at which 
cases are discussed, these provide a satisfactory 
channel for accurate communication. While this is 
undoubtedly true, it is also true that usually only a 
subset of cases is discussed at such meetings, leav-
ing the majority of reports not considered. 
Furthermore, in referral cases this often does not 
apply. Also, increasingly in the UK at least, there 
are moves towards more distant provision of cell 
pathology in off-site labs, which will make the 
holding of such clinical meetings less straightfor-
ward. While potentially telepathology can provide 
a substitute, this underlines the need for reports to 
contain only relevant, accurate information, pre-
sented in as unambiguous a form as possible.

Conclusion

Evidence-based cell pathology as an approach 
for the twenty-first century has made consider-
able advances in the last 14 years or so. Most,  

if not all, of the appropriate methodology now 
exists, but the challenge is in the application of 
the various methodologies to particular 
problems.

Part of this lack of implementation reflects the 
inherent difficulty of designing the equivalent of 
a therapeutic randomized trial in cell pathology, 
but I suspect the greatest barrier to widespread 
application is not technical or methodological, 
but a failure by pathologists to recognize the full 
extent of the problems such as those outlined in 
this chapter and elsewhere in this book. 
Addressing this issue will require greater profile 
for the evidence-based cell pathology movement, 
through the usual channels of publications, con-
ferences, and so on, but probably the most impor-
tant factor will be the incorporation of the 
principles into curricula for pathology training.
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Evidence-based pathology (EBP) offers a 
 conceptual framework and analytical tools to eval-
uate the scientific quality and potential clinical 
validity of information published in the literature 
[1–3]. EBP general concepts and principles also 
suggest the specific question-data-method-Bayesian 
inference-appraisal (QDMBA) paradigm shown 
in Table 13.1. This paradigm can help guide the 
review of information in the pathology literature 
and help formulate the experimental design of 
clinico-pathologic studies. The paradigm is based 
on six general assumptions: (a) clinico-pathologic 
problems are best approached by explicitly formu-
lating answerable patient-based questions that 
need to be investigated using the literature and 
personal experience, (b) data trumps authority and 

tradition, (c) the experimental design of studies is 
important to optimize the information that can be 
obtained from available data and generate the 
highest possible evidence level, (d) it is often more 
valuable to analyze data using a Bayesian infer-
ence approach that considers the pre-test and post-
test probabilities of findings rather than analyzing 
it with descriptive statistics, (e) the limitations of 
the data and experimental design of a study need 
to be considered in the discussion and explicitly 
disclosed, and (f) the conclusions of a study need 
to be appraised over time with additional prospec-
tive data in a process of continuous improvement.

In this chapter, we briefly describe several 
studies performed in our laboratory at Cedars-
Sinai Medical Center exploring different ele-
ments of the QDMBA paradigm for the evaluation 
of clinico-pathologic problems related mostly to 
our area of interest, thoracic pathology. We will 
review these articles and others from an episte-
mological viewpoint in an effort to provide 
examples about how the proposed “EBP” 
approach can potentially improve on the quality 
of the evidence generated by clinico-pathologic 
studies in anatomic pathology.
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Questions That Address Specific 
Patient-Centered Problems: How  
to Ask Practical and Answerable 
Questions of Clinical Relevance

Medical knowledge is constantly evolving at an 
ever more rapid course. Pathologists striving to 
diagnose their cases using the latest classification 
schema and latest information regarding the  latest 
immunostains, molecular tests, and other infor-
mation need to hone their skills at asking relevant 
answerable clinico-pathologic questions and at 
developing strategies designed to find this infor-
mation in the literature and integrate it with their 
personal experience [2, 3]. Unfortunately, these 
are not skills that are generally emphasized or for-
mally taught during pathology residency training.

Various teaching tactics for the formulation of 
answerable clinical questions are described in 
detail in the excellent book on “Evidence-Based 
Medicine How to Practice and Teach EBM” by 
Straus et al. Queries are categorized as “background” 
and “foreground” questions (Table 13.2) [4]. 
“Background” questions are designed to ask for 
general knowledge regarding a disease,  treatment, 
pathologic condition, or other topic. They are for-
mulated using a question root such as who, what, 
where, when, how, why, followed by a verb. 

Background questions generally address a specific 
disease, pathologic entity, test, or other aspect of 
health care. Examples of background type question 
are as follows: What is the etiology of diffuse 
alveolar damage? How do carcinomas of the 
prostate usually disseminate? Why is there necrosis 
in cases of invasive aspergillosis?

“Foreground” questions according to Straus 
et al. [4] query for specific knowledge to inform 
clinical decisions or actions. They have four 
essential components: (1) patient-specific prob-
lem, (2) intervention or exposure, (3) comparison 
if relevant, and (4) clinical outcomes, including 
time frame if relevant. In anatomic pathology, the 
four components of foreground questions can 
probably be simplified into three: patient-specific 
problem, pathologic examination or laboratory 
test, and relevance for patient care (prognosis or 
prediction of response to specific therapy). 
Examples of background type question are as fol-
lows: Which immunostains should be used  during 
the evaluation of transbronchial biopsy to differ-
entiate adenocarcinoma from squamous cell car-
cinoma? How many immunostains should be 
used to distinguish malignant mesothelioma from 
adenocarcinoma? What is the prognosis of a non-
smoking woman with a stage I lung adenocarci-
noma that shows the EGFR gene mutation?

Why Bother Formulating Clear 
Questions?

Straus et al. [4] suggest that formulating well-
designed patient-centered questions can help 
practitioners in seven ways: (1) help focus scarce 
learning time into gathering knowledge that is  

Table 13.2 Specific patient-centered questions: the first 
step to evaluate information using an evidence-based 
approach

Questions are formulated using a root (who, what, where, 
how, why) followed by a verb
Background questions

Query for general knowledge regarding disease, 
treatment, or other topic

Foreground questions
Query for specific knowledge to inform clinical 
decisions or actions

Table 13.1 Question-data-method-Bayesian inference-
appraisal (QDMBA) paradigm for the evaluation of 
 clinico-pathologic problems

A. Frame specific patient-based questions regarding 
particular diagnoses or other problems of interest
1. What are we trying to study and why?

B. Collect data from literature and own experience
1.  Data (“evidence”) trumps eminence and tradition

C. Methodological details of studies are important to 
assess evidence levels

D. Bayesian inference approach to evaluation data
1.  Estimate quantitatively or qualitatively the 

pre-test probabilities of the pathologic findings or 
test results of interest

2.  Estimate quantitatively or qualitatively the 
post-test probabilities of the pathologic findings 
or test results of interest

E. The results and conclusions of a study need to be 
appraised over time and updated as more data 
becomes available
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relevant to our patients needs, (2) help focus 
learning on evidence that addresses specific 
aspects of practice, (3) suggest high-yield search 
strategies to find relevant information in the lit-
erature, (4) suggest how the answers can be for-
matted to provide clinically useful information, 
(5) help in communication with other physicians, 
(6) provide a teaching tool to help train students, 
residents, and others, and (7) help grow our 
knowledge base as the questions are answered. 
Most of these concepts probably apply to the 
practice and learning of anatomic pathology and 
laboratory medicine.

Data (“Evidence”) Trumps Eminence  
and Tradition
The evidence-based medicine (EBM) literature 
reveals some ongoing tension between the data-
based approach favored by EBM advocates and 
the more traditional teaching and practice of 
medicine that reveres personal experience and 
clinical expertise [5–10]. This debate has resulted 
in the use of some colorful acronyms. For exam-
ple, EBM advocates have proposed the term 
“Eminence-based Medicine” to deride the prac-
tice of medicine based on the opinion and advice 
of recognized experts, while some of the latter 
physicians grumble about “Evidence-Slaved 
Medicine,” “Economy-Based Medicine,” and 
“Cookbook Medicine” [11–19]. A detailed dis-
cussion of the arguments for each of these com-
peting views of the current practice of medicine is 
beyond the scope of this chapter. Briefly, one can 
conclude that: (1) the “best evidence” collected 
by randomized clinical trials and revered by EBM 
aficionados as the best type of available knowl-
edge has some limitations and/or is often nonex-
istent, (2) there are many medical interventions 
that have never been validated in randomized 
clinical trials but are yet very valuable for patient 
care, and (3) there are various widely used medi-
cal practices that are either wasteful, ineffectual 
and/or not supported by current knowledge.

Pathologists, a particularly conservative group 
of physicians, have generally ignored this debate 
and continued pursuing the testing of various 
specimens with the latest available technology 
and using in their daily practice various disease 
classification schemas developed years ago by 

groups of experts and updated over time. 
Diagnostic classes tend to be split over into mul-
tiple subclasses with limited debate regarding 
their diagnostic reproducibility and clinical 
applicability. In addition, schemas such as the 
current World Health Organization (WHO) 
 classifications of lung neoplasms, sarcomas, and 
other neoplasms do not generally incorporate 
current information regarding the results of 
immunostains and/or molecular studies as defini-
tional criteria, although these tests are being 
widely used and probably variably interpreted by 
different pathologists [20, 21].

EBP advocates the critical evaluation of the 
purpose of classification models, and the evi-
dence levels of the data supporting various clas-
sification models and other practices. These 
efforts will hopefully advance anatomic pathology 
and laboratory medicine into more scientific 
endeavors, although it is fully recognized that 
there is a considerable “art” component in the 
practice of pathology related to the nature of the 
field and the variable ability and clinical experi-
ence of different practitioners.

Widely Accepted and/or Long-Held 
Practices and “Traditions” Need  
to Be Changed When Not Supported  
by Current Best Evidence

In instances where the best available evidence 
does not support widely accepted and/or long-held 
practices, EBP advocates for a change. Recent 
studies of thymomas performed in our laboratory 
using various elements of the QDMBA paradigm 
can be used to illustrate this problem [22–24]. 
Generations of pathologists have been trained by 
eminent experts to evaluate thymomas very care-
fully for the presence of microscopic transcapsular 
invasion [25]. Indeed, a previous classification 
schema of thymomas advocated the classification of 
the tumors into benign or malignant thymomas 
based on the absence or presence of local invasion 
[25]. In addition, thymomas that exhibit micro-
scopic transcapsular invasion have been classified 
by Masaoka et al. [26] and others since the early 
1980s as stage II disease. These concepts were 
accepted for many years and advocated by one of 



216 A.M. Marchevsky and R. Gupta

us (AM) in the 1980s in two subsequent editions a 
book devoted to the surgical pathology of medi-
astinal lesions and in other publications [27–29]. 
However, after becoming interested in EBP, we 
decided to evaluate, following some of the meth-
ods described in this book, whether these widely 
accepted concepts are actually supported by best 
evidence [24]. We formulated two simple back-
ground type questions: Is there a significant differ-
ence in prognosis between patients with stages 
I and II thymoma? What level of evidence is avail-
able to answer the previous question? A system-
atic review of the literature was performed and 
only level III data were found. The systematic 
review did not find any randomized clinical trials 
or level II studies in the English literature evaluat-
ing the prognostic significance of transcapsular 
invasion in thymoma patients. The level III 
data from 2,451 thymomas reported in 21 studies 
were analyzed with meta-analysis, showing no 

significant  survival differences between patients 
with Masaoka stages I and II thymomas (Fig. 13.1a, 
b). The lack of  significant differences in the prog-
nosis of patients with stages I and II thymomas 
supports the notions that (1) evaluation of tran-
scapsular invasion is of limited clinical value in 
tumors that lack invasion of neighboring organs or 
the pleura and (2) the staging schema for thymo-
mas needs to be updated. Interestingly, review of 
the seminal study of 27 patients with stage I thy-
momas and 7 patients with stage II disease by 
Masaoka et al. [26] showed that while patients 
with clinical stages I and II thymoma had slightly 
different 92.6 and 85.7% 5-year survival rates, 
respectively, these apparent survival differences 
were not statistically significant. In summary, this 
is a simple example of how certain concepts that 
had been taught by eminent physicians for many 
years to the point of becoming a “tradition” are 
found to lack best evidence to support them.

Fig. 13.1 (a, b) The level III data from 2,451 thymomas 
reported in 21 studies were analyzed with meta-analysis, 
showing no significant survival differences between 

patients with Masaoka stages I and II thymomas (From 
Gupta et al. [24]; with permission)
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The Experimental Design of Studies 
Is Important: Evidence Levels

The importance of selecting the correct method-
ological approach to particular clinico-pathologic 
problems and the evaluation of the quality of the 
information published in the literature using 
“evidence levels” is discussed in detail in Chap. 11 
[30]. The discussion included the pathology-specific 
scale of evidence levels shown in Table 13.3. In 
summary, well-designed prospective studies that 
validate their results using prospective data that 
was not used to develop the proposed diagnostic 
criteria or other results are given the best marks as 
level I or II evidence [30]. By contrast, clinicians 
generally classify the information published in 
well-designed randomized prospective clinical 
trials as level I evidence [4, 10, 31–34].

Fig. 13.1 (continued)

Table 13.3 Proposed scale of evidence levels for publi-
cations in pathology and laboratory medicine

Level 1   Case-control studies with external validation of 
results, using prospective validation data-sets 
from other institutions
Meta-analyses of level 2 studies
“Expert” recommendations based on 
 meta-analyses of level 2 or 3 studies

Level 2  Case-control studies with validation of results, 
using prospective validation data-sets from the 
same institution
Meta-analyses of level 3 studies
“Expert” recommendations based on a 
systematic review of literature without formal 
meta-analyses

Level 3  Case-control studies with validation of results 
using retrospective validation datasets from the 
same institution

Level 4  Case-control studies without validation

Level 5  Case series without controls, or individual case 
reports
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The Importance of Disclosing the 
Potential Flaws of the Interpretations  
of Results

The formulation of patient-centered questions can 
help evaluate the validity of the conclusions of a 
study and suggest future investigations. For 
example, the meta-analysis described above 
showing no significant prognostic differences 
between patients with stages I and II thymoma 
yielded conclusions that were limited by the fact 
that some patients with stage II disease had been 
treated with postoperative radiation therapy in 
some of the studies included in the analysis [24]. 
This selective treatment of some patients suggests 
the following two patient-centered questions: Is it 
possible that the prognosis between patients with 
stages I and II thymomas was not significantly 
different because some individuals with stage II 
disease had received radiation  therapy while 
patients with stage I disease have not? What best 
evidence is available to evaluate the effect of radi-
ation therapy in patients with stage II thymoma? 
This was recently investigated using another sys-
tematic review of best evidence with meta-analysis 
[35]. The study showed that radiation therapy 
does not significantly change the prognosis 
of patients with stage II thymomas, supporting 
the concept that the lack in significant prognostic 
differences between patients with stages I and II 
thymomas does not result from treatment effect.

The Importance of Evaluating  
Whether a Study Analyzed  
a Sufficient Sample Size

As explained in Chap. 8, sample size estimations 
and power analysis are currently routinely per-
formed in clinical trials and other clinical studies 
but are seldom performed in studies published in 
the anatomic pathology literature. This can lead 
to overly optimistic or pessimistic evaluations of 
negative results. For example, in a recent meta-
analysis of 905 thymomas classified by WHO 
and staged by Masaoka staging, collected from 
multiple hospitals in Asia, Europe, and California, 

we concluded that the only WHO histologic 
type of thymomas that provided prognostic 
 information independent of stage was A in 
stage III disease [36]. However, power analysis 
showed that 7,077 cases were really needed to 
exclude the possibility that other WHO histologic 
types of thymoma may provide stage-independent 
prognostic information to a power of 80%.  
A similar problem was encountered in a recent 
study evaluating the prognostic significance of 
isolated tumor cells and micrometastases in the 
intrathoracic lymph nodes of patients with 
adenocarcinoma and other nonsmall cell carci-
nomas of the lung [37]. The study was the largest 
to date and included review of 4,148 lymph nodes 
from 266 of our own patients and meta-analysis 
of all cases reported in the English literature. It 
concluded that there was no evidence that the 
presence of these small metastatic deposits was 
of prognostic significance. However, power 
analysis showed that even this seemingly com-
prehensive study was considerably underpowered, 
as 3,060 patients followed for 60 months were 
needed to achieve 80% power [37].

Bayesian Inference Can Be More 
Useful for Clinical Purposes than 
Analysis of Data with Descriptive 
Statistics: The Importance  
of Distinguishing Prior Probabilities 
from Posterior Probabilities

Bayesian inference is an analytical method based 
on the principles of Bayesian statistics that 
involves evaluating how the degree of belief in a 
hypothesis changes as additional data or evidence 
is collected [38–44]. Bayes’ theorem adjusts 
probabilities given new data using the formula 

=
P(B\A)P(A)

P(A\B)
P(B)

where, P (A\B): posterior probability given 
prior probability A probability from event B. 
P(A) = prior probability of A that does not take into 
account event B. P(B) probability after collecting 
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information from event B. Pathologists certainly 
do not need to estimate Bayesian statistics in 
daily practice but would probably benefit from an 
understanding of the differences between prior 
probabilities, the likelihood of certain diagnoses 
or other events prior to the evaluation of patho-
logic specimens or laboratory samples, from 
posterior probabilities, the likelihood of certain 
conclusions after the pathologic or laboratory 
samples are examined [45–49]. Surprisingly, 
this simple distinction is often lost in the ana-
tomic pathology literature when studies reporting 
the diagnostic value of a new test are designed 
following the format: “cases classified as either 
A or B by histopathology were tested with new 
test C. New test C was positive in 95% of A 
cases, therefore test C is very useful for the 
differential diagnosis between A and B.” One 
could argue that the prior probability of correct 
diagnoses of either A or B by histopathology in 
this group of patients was 1.0. It is not possible 
for a new test C to provide posterior probabili-
ties higher than 1.0 in the same population.

Ironically, many anatomic pathologists have 
probably been trained not to use a qualitative 
Bayesian inference process. For example, it is 
often recommended that histologic slides should 
be looked at without prior clinical information, 
not to “bias” the observations, although to our 
knowledge there are no studies showing that 
learning about the clinical history of a patient 
prior to pathologic examination decreases the 
quality of diagnostic interpretations. The pro-
cess of Bayesian inference that analyzes how 
the results improve sequentially as additional 
evidence is available is also not usually recom-
mended during the utilization process of immu-
nostains or other tests. By contrast, use of the 
concept of prior and posterior probabilities can 
be helpful in daily practice. For example, in a 
recent review of the pathology of metastatic 
lesions, we explained how estimating the prior 
probabilities of the most probable diagnoses in a 
particular patient, based on gender, age and 
location of the lesions, and the development of a 
short list of the most likely diagnoses prior to 
the evaluation of histologic slides and/or the 

performance of immunostains or others tests can 
improve on the diagnostic process and guide the 
selection of appropriate immunohistochemical 
tests [50].

Utilization of the Bayesian inference process 
could also probably improve on the quality of future 
clinico-pathologic studies in anatomic pathology. 
Indeed, most studies in anatomic pathology have 
evaluated their results by comparing the data in two 
or more populations with univariate and multivari-
ate statistics and/or survival statistics. The results 
of these studies often provide important insights 
regarding the clinical significance of particular 
findings in different populations of interest, but 
it is often difficult to apply their conclusions to 
the evaluation of tissue specimens or clinical 
laboratory samples from individual patients, as 
there is often some overlap in values, as explained 
in the next section.

Use of Probabilities, Odds,  
and Various Ratios to Sort Out 
Overlapping Diagnostic Criteria

Most pathologic entities exhibit a spectrum of 
pathologic findings that overlap to some extent 
with those present in other entities that need to be 
considered in a differential diagnosis. A similar 
problem is present during evaluation of the results 
of immunostains, molecular and other tests, as 
there are few ancillary tests that provide 100% 
specificity for a particular diagnosis. Seasoned 
pathologists usually interpret the presence of 
overlapping diagnostic criteria and test results 
using a qualitative approach that places available 
information “in context” based on prior clinical 
experience, and decide whether a particular diag-
nosis is more likely than others based on prior 
experience. Somewhat surprisingly, there have 
been relatively few studies where a similar 
approach has been applied in a more formal, 
quantitative manner using the mathematical con-
cepts of probabilities, odds, probability ratios, 
odds ratios, and likelihood ratios. By contrast, 
these metrics have been widely used in labora-
tory medicine.
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Recent studies from our laboratory evaluating 
the diagnosis of bronchioloalveolar carcinoma 
(BAC), well-differentiated pulmonary adenocar-
cinoma, and carcinoid tumor on frozen sections 
can be used to illustrate the potential value of 
using the Bayesian inference process in anatomic 
pathology [51, 52]. Table 13.4, taken from the 
study comparing BAC and well-differentiated 
adenocarcinoma with reactive epithelial atypia, 

shows the incidence of 11 histopathologic features 
that in our clinical experience can be helpful to 
distinguish well-differentiated adenocarcinomas 
of the lung and BAC from reactive atypia on fro-
zen section [52]. They include histopathologic 
features such as the abrupt transition, nuclear 
cytoplasmic ratio and others that are more fre-
quent in BAC and adenocarcinomas than in reac-
tive type II pneumocyte atypia and others, and 
other criteria that are more frequent in the latter 
condition, such as the presence of granulomas 
(Fig. 13.2). However, most of these histopatho-
logical features are present in significantly differ-
ent proportions in the two populations of interest 
(malignant vs. benign) as shown in Table 13.5. 
How can a pathologist use this variable informa-
tion to diagnose a single lung biopsy? One pos-
sible approach is to rely on the sensitivity and 
specificity of each pathological feature, by diag-
nosis, shown in Table 13.5. This type of informa-
tion poses interpretation conundrums as it is 
difficult to reconcile variable sensitivities 
and specificities. Looking at Table 13.5, taken 
from the same study, how can a pathologist 
decide whether “grossly evident nodule/lesion” 
with sensitivity of 0.95 and specificity of 0.52 is 
better or worse for the diagnosis of malignancy 
than “anisocytosis” with a sensitivity of 0.56 and 

Table 13.4 Incidence of 11 statistically significant 
parameters in cases of reactive atypical epithelial hyper-
plasia and BAC or well-differentiated adenocarcinomas of 
the lung

Parameter RA (%) AC (%)

Grossly evident nodule or lesion 50 93.1
Abrupt transition 62.5 88.46
Multiple patterns of growth 18.5 61.5
Granuloma 30.90  3.8
Anisocytosis 16.98 57.69
Proportion of atypia 33.9 80.76
Nuclear pseudoinclusion 44 73.91
Macronucleoli  0  8.5
N/C >80 44.6 84.61
Irregular nuclear membrane 53.7 84.61
Atypical mitoses  0 25.7

From Gupta et al. [52]. © 2003–2010 American Society 
for Clinical Pathology. © 2003–2010 American Journal of 
Clinical Pathology

Fig. 13.2 They include 
histopathologic features 
such as the abrupt 
transition, nuclear 
cytoplasmic ratio and 
others that are more 
frequent in bronchioloal-
veolar carcinoma (BAC) 
and adenocarcinomas than 
in reactive type II 
pneumocyte atypia and 
others, and other criteria 
that are more frequent in 
the latter condition, such as 
the presence of granulomas 
(From Gupta et al. [24]; 
with permission)
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specificity of 0.83? Another approach to the 
interpretation of overlapping data is to use simple 
statistics favored in the EBM literature, such as 
probability ratios, odds ratios, and likelihood 
ratios. These metrics, also shown in Table 13.5, 
allow sorting out the diagnostic value of each his-
topathological criteria or combinations of fea-
tures by diagnosis and for use of the information 
for the diagnosis of single patients. Probability 
ratio or relative risk (RR) is the ratio of the prob-
ability of an event occurring in a population ver-
sus the probability of taking place in another. For 
example, if a particular diagnostic feature is pres-
ent in 80% of A cases and 20% of B cases, the 
probabilities of such as features being present in 
populations A and B are 0.8 and 0.2 respectively. 
The RR is 4 for population A as compared to B, 
indicating that the feature is 4× more probable to 
be present in the first of the two populations. As 
explained in Chap. 4, odds are estimated by the 
simple formula: odds = probability/(1−probability). 
For example of a probability of 0.8, the odds 
would be 0.8/(1−0.8) = 4. OR offer a measure of 
effect size that describes the strength of associa-
tion between two binary data values. RRs are 
easier to interpret and offer more intuitive data. 
OR is usually used with logistic regression and in 
situations where RR cannot be readily estimated. 
RR and OR do not take into account the  prevalence 

of different populations. LR is based on  sensitivity 
and specificity and therefore takes into account 
the prevalence of different conditions. LR+ = sen-
sitivity/(1−specificity) and provides of the pres-
ence of a particular finding in a population that 
combines both the sensitivity and specificity of 
such feature. LR− = 1−sensitivity/specificity and 
provides an estimate of the potential validity of a 
negative test.

Table 13.5 and Fig. 13.2 show how the infor-
mation provided by these ratios can be used in a 
more intuitive manner for the diagnosis of indi-
vidual frozen sections as more closely resemble 
the reasoning process that is usually used by 
pathologists for a differential diagnoses: “diag-
nosis A is more likely than diagnosis B because 
of the presence of a combination of particular 
histologic features.” If we look at the various 
LR+ listed in Table 13.5, the presence of macro-
nucleoli and atypical mitoses strongly supports 
the possibility of malignancy, while others such 
as N/C ratio > 80% and irregular nuclear mem-
brane are less valuable. Figure 13.2 shows this 
information in a simple graphical manner. In 
this figure, the vertical line separates the two 
diagnoses, reactive atypia to the left and adeno-
carcinoma to the right. Features with high 
LR+ such as macronucleoli and atypical mitosis 
show almost no overlap in the two diagnoses, 

Table 13.5 Analysis of “statistically significant” diagnostic features for the diagnosis of pulmonary BAC or 
well-differentiated adenocarcinoma using Bayesian statistics

Feature
Chi square  
test (p value) Sensitivitya Specificitya Odds ratioa Relative riska

Likelihood  
ratioa

Grossly evident nodule/lesion 0.00 0.95 0.52 19.25 7.75 1.99
Abrupt transition 0.016 0.88 0.37 0.217 3.172 1.40
Multiple growth patterns 0.00 0.64 0.83 7.04 0.301 3.77
Granuloma 0.006 0.004 0.70 0.089 0.140 0.13
Anisocytosis** 0.00 0.56 0.83 0.150 3.125 3.21
Proportion of atypia 0.00 0.81 0.65 0.129 4.2 2.30
Nuclear pseudoinclusions 0.017 0.74 0.56 0.277 2.470 1.68
Macronucleoli 0.011 0.12 1.00 3.348 9,999
N/C ratio >80% 0.001 0.85 0.54 0.157 3.862 1.83
Irregular nuclear membrane 0.007 0.85 0.46 4.74 3.125 1.58
Atypical mitoses 0.00 0.38 1.00 0.00 3.528 9,999
a Bayesian statistics
** Anisocytosis was noted when the size of atypical epithelial cells varied by 3 times or more the size of the neighboring 
epithelial cells
From Gupta et al. [52]. © 2003–2010 American Society for Clinical Pathology. © 2003–2010 American Journal of 
Clinical Pathology
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while others such as the irregular nuclear mem-
branes and abrupt transition show considerable 
overlap. Although the information in Fig. 13.2 
does not provide a pathologist with absolute 
diagnostic criteria for the diagnosis of reactive 
atypia or adenocarcinoma, it can be helpful to 
evaluate the likelihood of any of the two diagno-
ses based on the presence of features with the 
highest LR+.

Use of Probability, Odds,  
and Likelihood Ratios for the Selection 
of Cost-Effective Immunohistochemistry  
and Other Ancillary Tests

There are no widely used methodologies to help 
develop evidence-based guidelines for the cost-
effective utilization of immunostains and other 
diagnostic and prognostic tests in anatomic pathol-
ogy. Pathologists have to rely on the information, 
usually presented in tables, included in books and 
other publications. However, as there are few anti-
bodies or other tests that are 100% specific for any 
one diagnosis, these tables frequently show results 
using variable number of +/− or listing the sensi-
tivity and specificity data of each test. Tables 13.6 
and 13.7 show an example of the variable sensi-
tivity and specificity of different immunostains in 
cases of malignant mesothelioma and adenocarci-
noma, collected in a recent systematic review [53]. 
In the presence of such variability, pathologists 

often rely on the advice of recognized experts in 
the field to select which markers are more helpful 
and how many markers should be used, although 
experts often do not completely agree with each 
other. Surprisingly, there has been little interest in 
the application of simple statistics such as proba-
bility ratios (risk ratios), odds ratios, and likeli-
hood ratios that can be very helpful to sort out the 
information that is more likely to provide a par-
ticular answer of interest. For example, a system-
atic review of 88 publications provided information 
about the use of 15 antibodies for the differential 
diagnosis between pulmonary adenocarcinoma 
and malignant mesothelioma and listed the 
 opinions of various experts [53]. The review 
showed that while most studies identified that cer-
tain antibodies such as calretinin, Wilm’s tumor-1 
(WT-1), Ber-EP4, and others were most helpful in 
this differential diagnosis, various experts did not 
agree about how many immunohistochemical 
tests were necessary and which antibodies needed 
to be included in a panel. Analysis of OR 
(Table 13.8) clearly showed that the use of a large 
number of antibodies was considerably worse 
than the use of even 1 marker and that 7 antibod-
ies provided optimal sensitivity and specificity for 
this differential diagnosis: MOC-31, BG8, CEA, 
TTF-1, CK5/6, WT-1, and HBME-1 [53]. 
Table 13.9 shows that the OR provided by selected 
panels of immunostains for the diagnosis of epi-
thelioid malignant mesothelioma. For example 
use of all 15 markers provides OR = 9.46 while 

Table 13.6 Summary of data from the literature averag-
ing the results from multiple studies: sensitivity and speci-
ficity of carcinoma markers for identifying pulmonary 
adenocarcinomas during the differential diagnosis with 
malignant mesothelioma

Marker Sensitivity (%) Specificity (%)

CEA (n = 1,524) 83 95
Ber-EP4 (n = 702) 80 90
B72.3 (n = 769) 80 93
LEU-M1 (p = 1,473) 72 93
MOC-31 (n = 213) 93 93
E-Cadherin (n = 183) 86 82
TTF-1 (n = 366) 72 100
Lewis-BG8 (n = 213) 93 93

From Westfall et al. [54], with permission of Wiley

Table 13.7 Summary of data from the literature averag-
ing the results from multiple studies: sensitivity and speci-
ficity of mesothelial markers for identifying epithelioid 
malignant mesothelioma during the differential diagnosis 
with adenocarcinoma

Marker Sensitivity (%) Specificity (%)

CK5/6 (n = 402) 83 85
Vimentin (n = 773) 62 75
Calretinin (n = 885) 82 85
HBME-1 (n = 769) 85 43
Thrombomodulin 
(n = 831)

61 80

N-Cadherin (n = 151) 78 84
WT-1 (n = 264) 77 84

From Westfall et al. [54], with permission of Wiley
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use of the best mesothelial and epithelial markers 
yields OR = 96.34.

Similar methodology helped optimize the 
selection of antibody panels for the evaluation of 
pleural effusions with malignant epithelioid cells 
[54]. Table 13.10 shows that while presentation 
of data using the sensitivity and specificity for 
each antibody used for the diagnosis of mesothe-
lioma and carcinoma by site of origin shows con-
siderable overlap, analysis of the data. Analysis 
of this data using post-test odds helps stratify the 
results by differential diagnosis. As a result of 
this information, we were able to select antibody 
panels for male (calretinin, TTF-1, PSA, and 
CDX2) and female patients (calretinin, TTF-1, 
ER, and CA125) that provided the most optimal 
information to evaluate the site of origin of a met-
astatic carcinoma in a pleural effusion.

Back to the Future: Is Molecular 
Pathology Going to Replace 
Pathologic Diagnoses? Classification 
and Prognostic/Predictive Models 
Based on Multivariate Data Analysis

Rapid advances in molecular pathology suggest 
the possibility that molecular tests will be able to 
identify in the near future various conditions that 
are currently being diagnosed by pathologists 
using microscopy. From an epistemological stand-
point, these claims are somewhat reminiscent of 
the interest 2 or 3 decades ago at developing image 
analysis systems that could diagnose pathologic 
and cytologic samples objectively and reliable 
[49]. These investigations led to the development 
of image analysis systems for the semi-automatic 

Table 13.8 Odds ratios of negative immunoreactivity in malignant mesothelioma

Epitope
Proportion of 
negative MM* MM # cases

Proportion of 
negative AC** AC # cases Odds ratio

CEA 0.95 1,818 0.17 1,524 92.76

Ber-EP4 0.9 899 0.20 702 36.00

B72.3 0.93 700 0.20 769 53.143

LEU-M1 0.93 1,204 0.28 1,473 34.16

MOC-31 0.93 276 0.07 213 176.51

E-Cadherin 0.82 218 0.14 183 27.98

TTF-1 0.82 240 0.28 366 1,233.19

Lewis-BG8 1.00 197 0.07 231 176.51

CK5/6 0.17 402 0.85 402 0.036

Vimentin 0.38 773 0.75 815 0.204

Calretinin 0.18 885 0.85 912 0.04

HBME-1 0.15 769 0.43 676 0.23

Thrombomodulin 0.39 831 0.8 964 0.16

N-Cadherin 0.22 151 0.84 121 0.54

WT-1 0.23 264 0.96 213 0.01
* Malignant mesothelioma
**Adenocarcinoma

Table 13.9 Odds ratios of selected panels of immunostains for the diagnosis of epithelioid malignant mesothelioma

Panel Odds ratio

A All 15 markers reviewed in the study by King and associates 9.46
B 7 Markers selected for their superior specificity and specificity (CEA, MOC-31, TTF-1, BG8,  

CK5/6, WT-1, and HBME-1)
27.01

C 2 Mesothelial markers with the best individual OR (CK5/6 and WT-1) 34.44
D 2 Epithelial markers with the best individual OR (MOC-31 and TTF-1) 198.18
E Combination of the “best” two mesothelial and epithelial markers (MOC-31, TTF-1, CK5/6, and WT-1) 48.63
F Combination of the “best” mesothelial and epithelial markers (TTF-1 and WT-1) 96.34
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screening of pap tests that evaluate multiple  
features with multivariate statistics, neural 
 networks, or other mathematical tools for reason-
ing with uncertainty [55–57]. Some of these 
instruments are currently approved by the Food 
and Drug Administration (FDA) for clinical use. 
However, the road to the development of auto-
mated image analysis systems for diagnosis was 
difficult, not because of the lack of resolution of 
the image analysis systems or of computer power, 
but partly because of the difficulties at validating 
the results of studies so that they would be appli-
cable to the population at large of pap tests. The 
analysis of data in these systems is based on the 
analysis of multivariate data using methods that 
apply probability theory. Small errors due to 
chance that are acceptable within the limits of the 
statistical test tend to become magnified as a large 
number of variables are analyzed, resulting in 
occasional spurious outputs derived from data 
over fit or shrinkage. For example, if a feature is 
statistically significant to p = 0.001 in two differ-
ent entities, there is 1 in 100 chance that it will be 
encountered in the wrong end of a differential 
diagnosis. When this 1% is propagated through 
hundreds of features, it can lead to spurious 
results. Validation of these systems requires large 
numbers of test cases that are often difficult 
and very costly to gather and analyze [56, 57]. 

In general, a ratio of ten test cases per variable is 
recommended to minimize the probability of 
errors due to data overfit [47].

Molecular Classifications Based  
on Multivariate Data

Molecular classifications and prognostic/predic-
tive models using information from multiple genes 
analyzed with high-throughput methods will likely 
face similar problems when the data is analyzed 
with bioinformatics techniques [58–60]. Our pre-
vious study exploring the development of classifi-
cation models for lung cancer cell lines based on 
DNA methylation markers can help illustrate the 
problem of attempting to classify pathologic 
lesions using molecular data [61]. We evaluated 
well-characterized cells lines of small cell lung 
cancer and nonsmall cell lung cancer for the pres-
ence of DNA methylation levels at 20 loci, using 
the real time PCR assay MethyLight. Cell lines 
were divided into various training set and test sets. 
Cases were rotated to be included in some of the 
training and test sets, using jackknife techniques. 
The data were analyzed with linear discriminant 
analysis and neural networks. The initial results 
were excellent, and neural network models could 
apparently classify all the cell lines with 100% 

Table 13.10 Post-test odds of positive immunoreactivity by antibody and diagnosis in pleural effusions with malignant 
mesothelioma or metastastic carcinomas

Antibody
Diagnosis (post-test odds)
Mesothelioma Lung Breast Müllerian Stomach Colon Prostate

Ber-EP4 0.0 0.6 0.5 0.2 0.1 0.0 0.0
MOC-31 0.0 0.6 0.6 0.2 0.1 0.0 0.0
CEA 0.0 1.7 0.1 0.0 0.1 0.1 0.0
Calretinin 4.0 0.0 0.0 0.2 0.0 0.0 N/A
CK5/6 3.0 0.3 N/A 0.0 N/A 0.0 N/A
WT-1 0.2 0.0 0.7 0.7 N/A N/A N/A
CK7 0.0 1.4 0.4 0.1 0.0 0.0 0.0
CK20 N/A 0.2 0.0 0.0 0.2 1.5 0.0
TTF-1 0.0 ∞ 0.0 0.0 0.0 0.0 0.0
ER N/A 0.1 4.0 0.2 N/A N/A N/A
PR N/A 0.0 ∞ 0.0 N/A N/A N/A
CA125 N/A 0.3 N/A 3.5 N/A N/A N/A
CDX2 N/A 0.0 N/A 0.0 0.5 2.0 N/A
PSA N/A 0.0 N/A N/A 0.0 N/A ∞
N/A Not applicable
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specificity. However, when the same data were 
split into different training and test sets, the results 
varied, as shown in Table 13.11 [61]. Interestingly, 
some of the same cell lines were classified as 
either small cell or nonsmall cell by different neu-
ral networks or linear discriminant analysis when 
the models were trained using slightly different 
data subsets. These results suggest that future 
studies attempting to classify tumors using multi-
variate molecular or other data will need to be 
validated with large sets of test data before their 
clinical validity is established, a process that is 
likely to be expensive and time consuming, unless 
better data analysis methods are developed as a 
result of advances in bioinformatics.

Forecasting Models Based  
on Multivariate Data: Beyond Cell Type 
and Stage as Predictors of Prognosis 
and Response to Therapy

Linear discriminant analysis, multivariate logistic 
regression, neural networks, and Bayesian belief 
networks can also be used to model prognostic 
systems that estimate prognosis or other 
 clinical variable using data collected with histo-
pathology, immunohistochemistry, and other 
methods [61–64]. These methods have been used 
 experimentally in our laboratory to estimate the 

 likelihood of positive regional lymph nodes in 
patients with breast cancer and colon cancer, the 
prognosis of lung cancer patients and other condi-
tions [65–67]. It is beyond the scope of this chap-
ter to discuss this topic in detail, but if pathologists 
are willing to explore beyond the standard consid-
erations of using cell type and survival statistics 
to predict prognosis and predict therapy response, 
there is a wealth of bioinformatics techniques for 
the analysis of multivariate data that could be 
used to combine clinico-pathologic data with that 
obtained with new IHC and molecular tests. These 
models could be specifically designed to estimate 
the prognosis of various diseases and likely 
response to selected therapies and could help 
reestablish the traditional role of pathologists 
guiding the hands of surgeons and other physi-
cians in the bioinformatics era.

Appraisal and Integration  
of Published Evidence  
with Personal Experience

Previous chapters of this book, particularly 
Chap. 11, have described various methods that 
can be used by pathologist to evaluate the proba-
ble quality and validity of information published 
in the literature. However, it is well known that 
the results of a study performed on a particular 

Table 13.11 Classification of test cases (n = 16) by linear discriminant models and artificial neural networks

Model (training  
cell lines n = 71)

Linear discriminant  
analysis

Linear discriminant analysis  
after logarithmic  
transformation of the data Artificial neural network

Number of  
correctly classified 
cell lines

Kappa  
coefficient

Number of  
correctly classified 
cell lines

Kappa  
coefficient

Number of  
correctly classified 
cell lines

Kappa  
coefficient

Models trained with all variables
1 12 0.50 12 0.5 16 1
2 10 0.25 12 0.5 16 1
3 12 0.50 14 0.75 16 1
4 10 0.25 11 0.35 16 1
5 10 0.25 13 0.62 16 1
Models trained with five variables (ESR1, MTHFR, PTGS2, CDKN2A, CALCA)
6 13 0.62 13 0.62 16 1
7 10 0.25 10 0.25 14 0.75
8 14 0.75 13 0.62 14 0.75
9 13 0.62 13 0.62 14 0.75
10 13 0.62 13 0.62 15 0.88
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patient cohort may not apply to other patients, 
because of diagnostic variability, demographics, 
and other factors. While clinical laboratories have 
developed various methods of proficiency testing 
to ensure that different laboratories will yield 
similar results on the same blood or other sam-
ples, there is relatively scanty literature in ana-
tomic pathology dealing with the problem of how 
best to standardize diagnosis and integrate best 
evidence from the literature with personal experi-
ence [68, 69].

Appraisal of Classification Schema 
Proposed by Groups of Experts 
and Integration into Personal Practice

Classification schema proposed by groups of 
experts could and probably should be evaluated 
by practicing pathologists before they are imple-
mented in routine practice by reviewing the best 
evidence that supports various recommendations. 
As there is variability among different patient 
populations, it is probably advisable that some 
preliminary testing be performed to evaluate how 
well the new schema can be applied to the diag-
nosis and management of local patients. To 
explore this subject, we recently evaluated the 
risks of malignancy predicted by thyroid fine-
needle aspiration (FNA) biopsies published by a 
group of experts sponsored by the National 
Cancer Institute [70]. A review of the publica-
tions listed in the NCI document revealed that the 
experts had relied mostly on level III evidence 
based on surgical follow-up. Such information is 
probably biased toward higher risk of malignancy 
estimates, as patients who undergo thyroidec-
tomy do so because of the FNA results and/or 
other clinical findings. To test this hypothesis, we 
analyzed our own data from 879 patients who 
underwent thyroid FNA at our hospital during a 
2-year period, using different denominators to 
estimate malignancy risks: surgery, repeat FNA, 
both surgery or repeat FNA, and all patients as a 
surrogate for clinical follow-up [70]. As expected, 
the risk estimates for patients with malignant or 
suspicious for malignant  categories by thyroid 
FNA were similar for calculations performed 

using all four denominators. By  contrast, for the 
benign category, the risk estimates calculated 
using surgical follow-up were considerably 
higher than for those using surrogate clinical 
 follow-up as the denominator. The study showed 
that NCI recommendations were generally valid 
for our patients with a diagnosis of “suspicious 
for malignancy” and “malignant” categories, 
while they probably variably overestimated the 
risk of malignancy for our patients with other 
diagnoses. It also demonstrated that stratifying 
the diagnostic categories into three groups other 
than nondiagnostic: “benign,”  “follicular lesion 
of undetermined significance or neoplasm,” and 
“suspicious or malignant” resulted in better, non-
overlapping risk predictions.

What Is the Purpose of Classifications  
in Anatomic Pathology: Should Lesions 
Be Grouped by Histogenesis, 
Morphology, or Their Forecasting 
Value?

Various classes of classifiers have been used to 
organize classification schema of tumors and 
other lesions in pathology. Schemas are generally 
based on the presumed histogenesis of the neo-
plasms, their morphologic features and/or their 
ability to forecast the prognosis of patients and/or 
the efficacy of various therapeutic measures. 
There is no general agreement regarding which 
classifiers are preferable. For example, the WHO 
classifies tumors of soft tissue and bone using a 
histogenetic or cell type approach, lung neo-
plasms using a mixed histogenetic and histomor-
phological approach, and pleural neoplasms 
using a histomorphological approach [20, 21]. In 
addition, some classification schemas of neo-
plasms attempt to correlate “cell type” or “histo-
logic type” with prognosis while others use tumor 
grade for this purpose. Reviewing the classifiers 
used in various schemas from an epistemological 
point of view, one could propose that classifica-
tions based on morphology should strive to be 
very descriptive with clear and explicit  diagnostic 
features so that they can be reproducibly applied 
by different pathologists with excellent agreement 
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levels as measured by kappa statistics. By contrast, 
schema designed to forecast prognosis or predict 
response to therapy should provide precise esti-
mates of the future. In addition, often both types 
of classifiers are considered in the organization of 
lesions in pathologic classifications, although it 
is often very difficult to optimize the schema to 
achieve both diagnostic reproducibility and excel-
lent forecasting ability. Classifications optimized 
for the latter frequently need to incorporate fea-
tures beyond morphology, such as the results of 
tumor markers and other tests, disease stage, and 
other clinical considerations and effects of 
therapy.

Recent studies of thymomas can also be used 
to illustrate the concept that, as the specific pur-
poses of various classification schemas are often 
not explicitly listed by their authors, there is some 
confusion in the way pathologists currently tend 
to organize and use classification schema. Thymic 
epithelial neoplasms are currently classified by 
WHO based on their histomorphology into thy-
momas types A, B1, B2, B3, AB, and thymic car-
cinomas [22, 23, 71]. We explored the forecasting 
ability of this classification schema by perform-
ing a systematic review with meta-analysis of 
available best evidence for patients with thymo-
mas classified by WHO criteria. As in the previ-
ous study, only level III data from 2,192 thymomas 
reported in 15 studies were identified [36]. Such 
best available evidence showed considerable 
variability in the proportions of WHO thymoma 
cell types in different studies, suggesting interob-
server variability problems. For example, the 
proportion of type A thymomas varied from 5 to 
24% while the proportion of B3 thymomas varied 
from 6 to 34%. This variability suggested that the 
subclassification of thymomas according to cur-
rent WHO criteria may not be entirely reproduc-
ible among different pathologists. This conclusion 
is supported by the study by Rieker et al. [72] 
showing in a large multicenter study that interob-
server agreement for the subclassification of 
WHO type B thymomas into B1, B2, and B3 
lesions was only at the low moderate level with 
kappa = 0.49. Analyzing the classification scheme 
from the view point of how well it forecasts 
 survival, our meta-analysis showed no significant 

survival  differences for patients with thymomas 
A, AB, and B1 [36]. By contrast, there were sig-
nificant survival differences between patients 
with A/AB/B1 thymomas and those with B2 and 
B3 thymomas (Fig. 13.3a, b), suggesting that 
only three categories of thymic epithelial lesions 
other than carcinomas are of prognostic value. 
The results of the meta-analysis raise interesting 
questions about how to modify the WHO classifi-
cation of thymomas in the future. Should these 
neoplasms continue to be classified into five his-
tologic types, because of the way they look to at 
least some observers under the microscope, and 
in spite of interobserver variability problems? If 
WHO continues to recommend a classification 
scheme including five histologic types should 
they be organized into three grades that appear to 
predict survival? Should the classification schema 
be collapsed into only three histologic types 
based on prognosis? This may reduce the possi-
bility of interobserver variability as pathologists 
will have fewer diagnostic choices but would 
involve aggregating thymomas A, AB, and B1 
that in typical cases look different from each 
other under the microscope. To our knowledge, 
there is no consensus among the intellectual lead-
ers in pathology about how to approach these 
types of questions in a consistent manner. In our 
view, it would be sensible to develop two types of 
classifications for lesions such as thymomas and 
other neoplastic and non-neoplastic conditions: 
(1) diagnostic classification schema and (2) mul-
tivariate forecasting models. The diagnostic clas-
sification schema would serve to stratify various 
conditions in a manner that continues to take 
advantage from the extensive clinico-pathologic 
knowledge collected by physicians over many 
years. These classifications would use very 
explicit diagnostic criteria identifiable with gross 
pathology, histopathology, immunohistochemis-
try and molecular techniques, and would be 
designed to provide the best possible interob-
server diagnostic agreement levels, so that 
patients would be consistently classified with the 
same disease or entity at different medical 
 facilities. The gold standard for this type of 
 classifications would be very high kappa coeffi-
cients of interobserver agreement. Multivariate 



Fig. 13.3 (a) Significant survival differences exist 
between patients with A/AB/B1 thymomas and (b) those 
with B2 and B3 thymomas (From Gupta et al. [52]. 

© 2003–2010 American Society for Clinical Pathology. 
© 2003–2010 American Journal of Clinical Pathology)
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forecasting models are not really classification 
schemas and, should probably be based on multi-
variate statistical analysis or other tools for reason-
ing with uncertainty such as decision tree analysis, 
neural networks, Bayesian belief networks, and 
others. Forecasting models would be optimized to 
predict survival and/or response to selected treat-
ment options with the highest possible precision 
and at the lowest possible cost. These forecasting 
models could include selected information pro-
vided by the diagnostic classifications, stage and 
other clinical information, laboratory, molecular, 
and other data optimized in a multivariate analy-
sis designed to best provide the information that 
surgeons and oncologists need to treat patients in 
a cost-effective manner.

How Valid Is the Prognostic 
Information Provided by Pathologic 
Diagnoses? The Inconvenient Problem 
of Interobserver Variability

A discussion of the appraisal of information from 
the literature and integration with personal experi-
ence cannot be complete without a brief discus-
sion of the problem of interobserver variability and 
its influence on prognostic estimates and on the 
definition of new entities [73]. Clinico-pathologic 
entities are usually described when a significant 
statistical association is found between a set of 
diagnostic features and survival or other out-
come variables. The new entity is thereafter inte-
grated into the appropriate classification schema. 
Pathologic classifications are regularly published 
without evaluation of whether pathologists other 
than the authors can reproducibly diagnose cases 
of the new entity. Depending on how distinct 
particular histopathologic features are and how 
often they are present in different entities that need 
to be included in a differential diagnosis, different 
pathologists can arrive at different conclusions, 
resulting in interobserver diagnostic variability. 
This problem has been documented in multiple 
studies involving neoplasms of the lung, gyneco-
logic tract, and others [74, 75]. It is less understood 
how these diagnostic variability could influence 
the statistical  significance of the data that is used to 
define new clinico-pathologic entities. We recently 

explored this problem using the distinction 
between usual interstitial pneumonia (UIP) and 
nonspecific interstitial pneumonia (NSIP), two 
closely related forms of chronic diffuse lung dis-
ease that can be difficult to distinguish from each 
other on wedge lung biopsies [73]. Using the 
QDMBA process described in this chapter, we for-
mulated specific questions and performed a sys-
tematic review of the literature. Seven retrospective 
level III studies were found that had evaluated 
patients with both UIP and NSIP and provided sur-
vival information. As shown in Table 13.12, there 
is considerable interstudy variability in the prog-
nosis of patients diagnosed as either UIP or NSIP. 
In addition, 95% confidence intervals of the data 
showed considerable overlap in survival propor-
tions among patients with UIP and NSIP in several 
of the  studies reviewed. Although all studies con-
firmed the general concept that NSIP patients have 
 significantly better survival than those with UIP, 
the survival proportions reported for UIP and NSIP 
patients ranged from 11–58% to 39–100% respec-
tively. This variability showed that the  survival 
proportions of patients diagnosed with UIP at 
some centers was 5× better than in others. 
Variability for NSIP patients was in the order of 
3×. As all these studies were retrospective cases 
series, it is possible that the results were influenced 
by demographics, the severity of disease at diag-
nosis, and treatment effect. Interestingly, a simula-
tion performed using the data from each study, 
keeping the number of patients surviving the dis-
ease as a constant and increasing or decreasing at 
5–30% intervals the number of patients with either 
UIP or NSIP, to simulate interobserver diagnostic 
variability, showed that changing approximately 
10% of the diagnoses would have changed the sta-
tistical significance of all the studies. Analysis of 
the data generated by the various simulations with 
kappa statistics showed that kappa values at mod-
erate agreement levels could significantly change 
the prognostic estimates of studies reporting 
the prognosis of patients with UIP and NSIP. The 
results of the study strongly underscore the need to 
develop pathologic classifications that minimize 
the problem of interobserver variability and the 
importance of testing for possible interobserver 
variability before new pathologic classifications 
are disseminated.
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Field Testing New Pathologic 
Classifications Before  
They Are Published

A logical approach to minimize the influence of 
interobserver diagnostic variability would be for 
the authors of new classifications that are likely 
to be used by many pathologists worldwide, such 
as those published by WHO, to field-test the 
diagnostic reproducibility of the proposed schema 
with an adequate sample of pathologists to evalu-
ate whether they could apply them consistently in 
their practices. This process could lead to modifi-
cations in the proposed classification schema or 
definitions of various diagnostic criteria prior to 
publication, in an effort to decrease possible 
interobserver diagnostic variability. Currently, it 
is sometimes disturbing that even the authors of 
diagnostic classifications disagree among them-
selves, a problem that is sometimes highlighted 
when various experts render variable diagnoses 
during slide symposia at national and interna-
tional teaching conferences. We recently explored 
the concept of testing the validity of proposed 
diagnostic before publication in a recent study 
suggesting several evidence based criteria to 
help distinguish metastastic breast cancer from 
primary lung adenocarcinoma on thoracic fro-
zen sections [76]. The study of 129 frozen 
 sections was conducted using the QDMBA para-
digm and initially showed,  somewhat to our 
 surprise, that in most patient populations, includ-
ing ours, primary lung adenocarcinomas were 

approximately twice more frequent than meta-
static breast cancer, a somewhat counterintuitive 
finding in patients with a previous history of 
breast cancer. Using these pre-test probabilities 
and the incidence of various  pathologic features 
in the two populations we identified, using post-
test OR several significant pathologic criteria that 
favored the diagnosis of primary lung adenocar-
cinoma. They include the presence of acini, lepidic 
growth, nuclear pseudoinclusions, and central 
scar. By contrast, the presence of comedonecro-
sis, solid nests of tumor cells, trabecular architec-
ture, and cribriform growth favored the probability 
of metastastic breast cancer (Fig. 13.4). Once 
these diagnostic criteria were obtained, they were 
explained to a group of attending pathologists 
and residents, and their validity tested using 
exams administered before and after the train-
ing session. The exercise showed that most par-
ticipants were able to significantly improve the 
accuracy of the diagnosis of either primary lung 
adenocarcinoma or metastastic breast carcinoma 
using the proposed criteria. Feedback from the 
exercise was used to improve on the definition of 
various criteria and the way they were grouped 
prior to publication.

Conclusion

It is apparent from the epistemological review of 
current practices provided in this book that 
pathologists have been much more interested in 

Table 13.12 Evidence summary from studies evaluated with the simulation tool

Author
Number  
of cases

Number of usual  
interstitial pneumonia  
(UIP) patients

UIP survival %  
and 95% CIa

Number of nonspecific  
interstitial pneumonia  
(NSIP) patients

NSIP survival %  
and 95% CIa

Parra 109 55 36.3 (24.9–49.5) 22  77.3 (56.6–89.9)
Riha 70 53 58 (44.6–70.3) 7  80 (43.3–95.4)
Park 362 203 49 (42.2–55.8) 66  73 (61.3–82.2)
Bjoraker 104 63 28 (18.4–40.1) 14  80 (53.9–93.2)
Flaherty 109 51 30 (19.2–43.6) 30  90 (74.4–96.5)
Travis 101 56 43 (30.9–56.0) 22 100 (85.1–100)
Nicholson 78 37 11 (4.4–24.9) 28  39 (23.3–57.3)
Total 697 518 40.9 (36.7–45.2) 189  75.1 (68.5–80.7)
a 95% confidence intervals (CI) were estimated from published data
From Marchevsky and Gupta [73], with permission of Elsevier
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collecting new information that to consider its 
validity and/or clinical applicability. This chapter 
suggests a systematic approach to the evaluation 
of data that could advance the specialty to the 
next level. The proposed systematic approach 
does not offer any new analytical concepts but 
merely organizes the process of collecting and 
evaluating data in a manner that reflects basic 
 elements of the scientific method. The chapter 
also discusses the fact that, unfortunately, pathol-
ogists have been reluctant to develop novel para-
digms that integrate new data with preexistent 
knowledge taking advantage of statistical and 
other analytical methods that are currently being 
use in clinical medicine, business, engineering, 
and other fields of interest. In an era where evi-
dence levels, quality of care, cost-effectiveness, 
and other quantitative yardsticks are being 
increasingly used to evaluate the added value 

being provided by different physicians to the 
continuum of patient care, the application of 
some of the concepts being illustrated in this 
chapter will hopefully stimulate some interest in 
the application of EBP concepts to their research 
and practice.
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A substantial proportion of patients’ diagnoses and 
treatments are dependent on reliable tissue diagno-
ses in surgical pathology and cytopathology. This 
can easily be demonstrated in cases of cancer as 
well as many inflammatory conditions such as 
organ rejection [1–4]. In cancer management, tis-
sue diagnosis and staging are the most important 
determinants of prognosis and therapy. Likewise, 
determining the level of rejection in allograft biop-
sies is the main determinant of immunosuppressive 
therapy. The importance of a correct diagnosis in 
these situations cannot be overemphasized.

In attempting to reduce errors many advocate 
a systems approach [5]. At the heart of this 
approach is the admission that humans are falli-
ble and will make mistakes and therefore the sys-
tems around them should be designed to minimize 
errors while at the same time continuously check-
ing to identify errors and correcting them at the 
earliest point in the process.

In this scheme of error reduction a handful of 
reasons are cited as the primary causes of errors. 
They include; lack of communication, variable input, 
complexity, inconsistency, human  intervention, 

tight time constraints, and a hierarchical culture. 
The literature on pathology errors is far from 
comprehensive and has not for the most part taken 
this approach but does offer clues of how errors 
occur and how they could be addressed. In this 
chapter, I will discuss how errors occur in surgical 
pathology and then attempt to adapt to pathology 
existing proven knowledge used in many indus-
tries to reduce errors.

Errors in Surgical Pathology

Part of the problem in addressing errors is the 
various ways that errors can occur and the vari-
ous ways that they may be reported (Table 14.1). 
While the literature is variable in measuring the 
level of errors that exist in anatomic pathology, it 
is safe to say that errors exist and have been 
reported in a range up to 40% of cases, hence the 
need to evaluate and determine ways to reduce 
errors [6]. A study by Meier et al. focuses on the 
development and validation of a taxonomy of 
defects [7]. This report derived its information 
from review of amended reports from seven insti-
tutions. Errors are categorized into four broad 
categories; misinterpretations, misidentifications, 
specimen defects, and report defects. Using these 
categories, Meier et al. were able to estimate the 
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occurrence of errors within the framework of the 
surgical pathology test cycle (Table 14.2). About 
a fourth of errors occur within the analytic phase 
(misinterpretation and some specimen defects) of 
the test cycle. The remaining errors occur about 
equally within the preanalytic (misidentification 
and some specimen defects) and postanalytic 
(report defects) phases of the test cycle.

There are other means of evaluating the exis-
tence of error which can focus on significant 
errors or errors that have the potential for patient 
harm. Evaluation of errors from a legal perspec-
tive yields a completely different picture [8, 9]. 
Reports of legal judgments and settlements against 
pathologists demonstrate that the vast majority 
(>90%) of these cases are analytic errors, and 
60–70% of these errors are false-negative results. 

Since legal judgments and settlements usually 
result because of patient harm, it may be safe to 
say that these represent significant diagnostic 
errors. Error reduction efforts, therefore, should 
be focused on the analytic phase of the test cycle 
and the factors in the pre- and postanalytic phase 
that have a strong influence on determining an 
accurate diagnosis.

Errors Within the Different Phases  
of the Test Cycle

In this section, errors are discussed in relation-
ship to where they occur within the test cycle. In 
the next section, most of these errors will be dis-
cussed as to the reason they occur and possible 
remedies to help reduce errors.

Preanalytic Errors

While all errors in the preanalytic phase of the test 
cycle are potentiality significant, by virtue of its 
potential for catastrophe, specimen misidentifica-
tion stands out as the most important potential 
error [10]. Misidentified specimens have resulted 
in surgical procedures being performed on the 
wrong site and even on the wrong patient.  
Specimen identification errors not only occur 
principally within the preanalytic phase of the test 
cycle but are also well documented within the 
analytic and postanalytic phases of the test cycle.

The responsibility of initial specimen identifi-
cation is shared between the laboratory and every 
other department where specimens are genera-
tion. This includes operating rooms, endoscopy 
suits, physicians’ offices, outpatient surgical cen-
ters, and interventional radiology among others. 
Problems occur because the vast majority of indi-
viduals that label specimens are usually not 
trained by pathology and are not accountable to 
pathology. The system is extremely complex 
when you consider the number of locations and 
individuals involved. To get a handle on this 
problem, an  institution has to bring focus on the 
problem. The Joint Commission has focused on 
patient identification as a patient safety goal and 

Table 14.1 Evidence-based approach to error reduction: 
where do errors occur?

1. Where in the test cycle 
do errors occur?

Quality assurance data
Preanalytic – up to 40%
Analytic – 25%
Postanalytic – 29–44%

2. Where do the most  
significant errors occur?

Legal claims
Preanalytic – 8–9%
Analytic – 90%
Postanalytic – 1%

3. What are the most 
significant errors?

Analytic error
Specimen identification
Report defects

Table 14.2 Classification of errors

Error types Error subtypes

Misinterpretation False-negative
False-positive
Misclassification

Misidentification Patient
Tissue
Laterality

Specimen defects Lost
Inadequate
Absent or discrepant measurements
Nonrepresentative sampling
Absent or inappropriate ancillary 
studies

Report defects Typographical errors
Missing or wrong demographic or 
procedural information
Electronic transmission or format 
defects
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specimen identification is part of this goal [11]. It 
is recommended that specimen identification be 
made an institutional goal and not simply a 
 laboratory goal [10, 12, 13]. In this light, the 
responsibility of specimen identification is 
shared equally between clinical departments and 
 pathology. Factors that have been shown to 
improve specimen identification are twofold [14]. 
First is the introduction of redundant checks such 
as remote order entry for inclusion of patients 
into the laboratory system, checks of patient 
identity at every hand-off such as at specimen 
pick-up and at accessioning and checking the 
patient identity before release of reports. Second, 
over time continuous monitoring has been shown 
to improve specimen identification. The reason is 
not clear, but it is thought the continuous moni-
toring keeps the focus on the problem that results 
in long-term improvement.

Analytic Errors

Analytic errors or diagnostic errors occur for a 
variety of reasons, some of which are addressed 
blow. While analytic errors are not insignificant, if 
one considers the complexity of systems needed to 
arrive at a correct diagnosis, it is a wonder that 
more errors do not occur. To arrive at a correct 
diagnosis three systems must operate adequately 
to achieve the desired result. (1) A lesion must be 
clinically identified and adequately sampled. (2) 
The laboratory must be able to appropriately pro-
cess the tissue and have the ability to provide all 
necessary ancillary tests. (3) A pathologist must 
have sufficient knowledge, experience, and judg-
ment to arrive at the appropriate diagnosis. The 
first system resides in the preanalytic realm and is 
mostly beyond the control of the laboratory, and 
therefore will not be addressed here. The second 
system speaks to the optimal operation of the labo-
ratory. Error reduction in laboratory systems is 
discussed below by using lean design, automation, 
reducing complexity, and by incorporating multi-
ple checks into the system [15, 16]. One further 
step that should be addressed regarding ancillary 
tests is the establishment of appropriate validation 
procedures and the prudent use of proficiency 

 testing material where available [17]. The third 
system includes the pathologists’ individual train-
ing, specialization, organization, and individual 
traits. Error reduction in this area is addressed col-
lectively with the use of consensus diagnostic cri-
teria, prudent use of redundant sign-out including 
the use of specialists, the use of ancillary testing 
when appropriate, and the use of checklists. Many 
of these topics are also addressed below.

Postanalytic Errors

The two most often cited postanalytic errors are 
incomplete reports and lack of communication 
for significant and unexpected (critical) findings 
[18, 19]. Effectively addressing incomplete reports 
has been demonstrated with the use of computer 
based checklist reports [20]. Occasionally, how-
ever, reports are incomplete because the wrong or 
incomplete history is given. This can be estab-
lished with simple examples; colonic biopsies are 
performed for multiple reasons including colonic 
polyps or to rule out inflammatory processes. 
If the biopsy is accompanied by the history of 
polyp, the pathologist will address the differential 
diagnosis of a mass and if no findings of a polyp 
are identified, the diagnosis will most likely be 
“benign colonic mucosa.” However, if the history 
is “diarrhea” then the pathologist will examine the 
biopsy tissue more carefully for inflammatory 
conditions and if none are found the diagnosis is 
likely to be something akin to “no inflammatory 
changes identified.” Sometimes a clinician has a 
specific diagnosis to rule out such as amyloidosis. 
If this is not conveyed, it may be easily missed 
and ancillary studies may not be performed to 
identify or exclude the specific finding.

Reasons for Diagnostic Errors  
and Potential Remedies

Variable Input: Lack of Communication

Many studies have demonstrated that communi-
cation failure is a key element in many errors in 
medicine [21, 22] (Tables 14.3–14.5). One of the 
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most important communications that has been 
shown to affect diagnostic accuracy and com-
pleteness in the clinical information provided with 
the specimen. Variability in the content and accu-
racy of clinical information provided to surgical 
pathology with the biopsy tissue has been shown 
in multiple studies to affect diagnostic accuracy 
[23–26]. In a study of amended reports, 10% of 
cases were amended because additional informa-

tion was obtained beyond the requisition slip [25]. 
An additional 20% of cases were amended because 
the clinician asked for review of the case, presum-
ably because of an apparent clinical-pathologic 
discrepancy. In a study focused on clinical history 
provided by clinicians, 6.0% of cases in which 
additional history was obtained lead to a change 
of diagnosis [24]. And in a study of malpractice 
claims against pathologists, up to 20% of cases 
were due to the pathologist’s ability to obtain all 
the pertinent information [26]. A recent study of 
atypical melanocytic lesions showed a significant 
increase in diagnostic agreement with the inclu-
sion of pertinent clinical information [23].
Unfortunately, there are no good studies that have 
attempted to improve on the clinical input to 
pathologists. The increasing availability of elec-
tronic medical records, although not proven, seems 
to have alleviated some problems. The pathologist 
still has to take the initiative to find the desired 
information. Adoption of electronic medical 

Table 14.3 What are the causes of errors?

What are the factors that contribute  
to errors in medicine? Can an example be found in pathology that demonstrates each factor?

Variable input – communication Absent or incomplete clinical history
Complexity There are potentially over 100 steps in reaching a diagnosis
Inconsistency Use of diagnostic criteria, report formatting and content, training, and experience
Human intervention The entire process is dependent on human handling of specimens
Hand-offs Tissue is transferred multiple times with the need to maintain ID
Tight time constraints Batch mode is pervasive in surgical pathology
Hierarchical culture Lack of questioning of authority

Table 14.5 Additional error prevention strategies

Continuous 
monitoring

Continuous monitoring has been shown to 
improve a measure over time. Two areas 
relevant to surgical pathology include 
specimen identification and frozen section 
– permanent section correlation

Report  
formatting

1. Use of diagnostic headlines to 
 emphasize key points

2. Maintenance of layout continuity with 
other reports and over time

3. Optimization of information density
4. Reduction of extraneous information

Table 14.4 Potential remedies or solution to errors

What are the factors that contribute  
to errors in medicine? What are the potential solutions for pathology?

Variable input – communication Electronic medical record, remote order entry with forced functions, automate 
clinical history retrieval, multidisciplinary clinical teams

Complexity Lean production redesign, automate were possible, standardize
Inconsistency Standardization of diagnostic criteria, Standardize procedures, Standardize 

report content and layout, continuous education
Human intervention Use checklists to assure compliance, automate were possible, remove distractions
Hand-offs Use of tools such as ink, barcodes, RFID, remote order entry, redundant checks 

to assure correct ID
Tight time constraints Continuous processing as much as possible, emphasize doing the job well vs. 

doing the job fast, remind all of the pitfalls
Hierarchical culture Change the culture, take away fear of reporting problems
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records appears to be underway in medium and 
large hospitals and laboratory  systems. Significant 
gaps remain particularly for specimens that are 
obtained at doctors’ offices and outpatient centers 
beyond a defined healthcare system or institution. 
Over time, developments of secure internet based 
technology solutions are likely to facilitate the 
electronic medical record. One method that has 
been shown to improve patient identification and 
could improved clinical information is remote 
order entry [14]. Functionality that would force 
the inclusion of the clinical history before a speci-
men can be entered into the laboratory system 
could be adopted. Another potential solution could 
be the automatic inclusion of the clinical note of 
the physician that obtains the tissue. Of course 
these solutions are not possible without the pres-
ence of robust computer systems.

Complexity

There is a greater chance of mishap with greater 
complexity. Intuitively, it seems obvious that a 
process with many steps has a greater chance of 
error than a similar process with only one or two 
steps. This can actually be demonstrated mathe-
matically in hypothetical and real situations. If a 
process has one step in it and has a 1% chance of 
error, a similar process with 25 steps and a 1% 
error at each step bring that total error risk to 22% 
[5]. This can be demonstrated in real life with 
measured errors as well.

Surgical pathology errors have not been mea-
sured at every step, but surgical pathology is a 
complex process requiring numerous steps within 
the laboratory to complete tissue processing and 
diagnosis with endless variations that may lead to 
error. This is the reason why many have used lean 
production techniques to improve histologic pro-
cesses, gain efficiency, and reduce errors. Using 
lean methodology, Zarbo et al. reduced the over-
all misidentification case rate and histological 
slide misidentification rate by 62 and 95%, 
respectively [15].

Although variable results have been achieved, 
at this time, lean redesign with selective introduc-

tion of automation appears to offer the best 
opportunity for improvement in the histology 
laboratory [15, 27, 28]. Lean redesign addresses 
three potential error prone processes. First, lean 
aims to either eliminate steps when possible or 
better alien steps so that processes are smoother 
and less disruptive (reduce complexity). Second, 
lean redesigns of surgical pathology introduces 
the judicial use of technology with the use of bar-
codes or other technologies to eliminate redun-
dant steps such as reentry of identification data 
on slides and blocks. The introduction of technol-
ogy addresses issues of inconsistency in hand 
writing or data reentry and in other processes 
such as staining with the introduction of auto-
matic stainers. Third, lean redesign results in 
standardization of processes and the elimination 
of conflicting procedures and the need to train in 
multiple procedures.

Inconsistency

Inconsistency can be demonstrated as a source 
of error in at least two ways in surgical pathol-
ogy. The first is in the effect of diagnostic crite-
ria on diagnostic reproducibility and the second 
is in the pathologists’ ability to provide more 
complete reports with the use of synoptic 
reports. During the past couple of decades dra-
matic improvements have been made in the 
adoption of standardization in diagnostic crite-
ria and in the adoption of standardized cancer 
reports.

The following example demonstrates the 
effect of the use of standardized diagnostic crite-
ria on the level of diagnostic agreement. In 1991, 
Dr. Rosai conducted a study which strongly sug-
gested that inter-observer concordance in the 
classification of breast ductal proliferative dis-
ease was unacceptably low [29]. In this study, 
Dr. Rosai asked a panel of experts to review the 
same set of cases and render their diagnoses. 
Soon after publication of this study, Schnitt et al. 
published a similar study that demonstrated high 
concordance among a panel of the same experts in 
the diagnosis of proliferative ductal lesions [30]. 
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In the study by Schnitt et al., the experts were 
instructed to use standardized criteria for the 
diagnosis of lesions. The difference is a stark 
demonstration of the power of standardization. 
This has been shown in other areas of surgical 
pathology such as urothelial neoplasia, Barrett’s 
dysplasia and organ rejection [1, 2, 31, 32].

The other aspect of standardization is that of 
report content. This is particularly important in 
oncology where different treatment options are 
available and are dependent on pathologic grading, 
staging, and tumor marker expression [33, 34]. 
This is easily demonstrated using the example of 
breast cancer where a variety of treatment options 
are considered based on tumor grade, stage, and 
the expression of ER, PR and HER2. The adoption 
of national standards in the form of standard grad-
ing and staging of tumors has greatly facilitated 
and accelerated national treatment trials in the 
evaluation of potential therapies. This has been 
further accentuated with the use of standardized 
computer based forms that have been shown in 
multiple studies but none as eloquently as in a ran-
domized prospective examination of pathology 
reports in a study by Branston et al. [20]. The con-
trol arm of the study included eight hospitals that 
did not use computer based cancer reports (check-
lists) and the study arm included eight hospitals 
that used computer based cancer reports (check-
lists). This study concluded that reports in the hos-
pitals with the computer checklists were more 
complete 28% of the time. The study also found 
that clinicians found these reports preferable while 
pathologists found them acceptable.

One aspect of reports that should be consid-
ered is the ability of clinicians to derive the infor-
mation that they need to treat the patient from the 
report. Powsner demonstrated that clinicians rou-
tinely misinterpreted pathologists’ reports 30% 
of the time [35]. Factors that were cited to be 
associated with improvement of this gap included 
familiarity with report format and clinical experi-
ence. Dr. Valenstine in a review of pathology 
report formatting suggests that four evidence-
based and time-tested principles may be helpful 
in formatting reports for more effective commu-
nication. These include: (1) the use of diagnostic 
headlines to emphasize key points, (2) mainte-

nance of layout continuity with other reports and 
over time, (3) optimization of information den-
sity, and (4) reduction of extraneous information 
[36]. Dr. Valenstine based his conclusion by 
extension of research performed in other fields 
outside of medicine including cockpit design in 
aviation and newspaper print effectiveness.

Human Intervention

Surgical pathology remains a process that is 
heavily dependent on human physical and intel-
lectual activity. With the exception of very short 
segments of the test cycle, surgical pathology is 
most assuredly dependent on humans doing their 
jobs. As such, surgical pathology is subject to 
human error. As in other areas of health care, a 
systems approach to quality management in sur-
gical pathology has been recommended to reduce 
errors [37, 38]. At its core, this management style 
advocates design of processes with two features 
in mind; prevention of errors and detection of 
errors.

In design of systems that prevent errors, two 
methods have prevailed. First, introduction of 
automation whenever possible works well where 
information must be re-inputted into the system 
[15]. The use of slide and block labelers as well 
as the use of barcode technology are good exam-
ples where human intervention in the form of 
reentering information may be avoided with the 
use of automated equipment thus reducing the 
potential for error. Automation may be used to 
simplify a process in the sense that a machine 
will do multiple steps, whereas from the human 
perspective the process is reduced to one or two 
steps. Machines also have the added advantage of 
reducing procedural variations because machines 
operate at a tight range of specification and are 
not subject to distraction. Automatic stainers and 
coverslipers demonstrate this utility well.

Reducing cognitive errors at the point of diag-
nosis has been challenging, but methods have 
emerged that reduce or detect error. The principle 
method of error prevention has been redundancy 
in the form of review of cases before or after 
cases are verified or signed out.
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In three publications it has been shown that 
review of cases by more than one pathologists 
helps lower the number of amended reports and 
possibly the error rate [25, 39, 40]. In a multi-
institutional study of amended reports, cases that 
were reviewed before a case was signed out had 
an amended report rate of 1.2/1,000, vs. 1.6/1,000 
for cases that were reviewed after they were 
signed out. Renshaw and Gould demonstrated 
that cases reviewed by greater than one patholo-
gist resulted in a lower disagreement rate and 
amended report rate. Dr. Novis also presented evi-
dence that review of cases by two pathologists vs. 
one resulted in lower error rates. The best strategy 
for case review has not been formulated, but may 
be dependent on the type of material seen at any 
one institution and the number of pathologists 
participating in case sign-out. Review of cases 
after they have been verified is an extension of the 
same principle, but falls into the realm of error 
detection, since this process would occur beyond 
the point of error prevention.

The use of checklists has been advocated as a 
tool to control the extent of human intervention. 
This can easily be demonstrated with the use of 
cancer checklists for reporting all necessary 
parameters in cancer reports [20, 33, 34, 41]. 
With the use of checklists, a pathologist is 
reminded of all the items that should be in that 
report. Indeed, a computer system can be built to 
force individuals to complete a report before a 
report can be verified or signed out. Checklists 
can also be used for a whole host of tasks in the 
laboratory to assure that things get done [42]. An 
example of this includes a list of tasks that a tech-
nologist or clerk must perform to prepare an 
accessioning station at the beginning of the day 
and a list of tasks that must be done at the end of 
the day to make sure nothing is forgotten.

Updated Knowledge on Diagnostic 
Criteria and Staging
Various subspecialty groups have expended a 
great deal of effort to establish diagnostic crite-
ria for various diseases and conditions with the 
intent of standardization. But pathologists still 
have to update themselves and their systems in 
the use of these diagnostic criteria. Part of the 

problem is the great diversity of specimen types 
that pathologists have to address. Some larger 
pathology practice groups have adopted com-
plete subspecialization for their case sign outs. 
In this situation, a GI pathologist takes care of 
the GI cases, a hematopathologist signs out the 
hematologic cases and so on. Individuals in each 
subspecialty are responsible for updating them-
selves on the current literature in that field and 
often are reasonably knowledgeable on the treat-
ment options and other clinical scenarios. In this 
type of practice the pathologists communicate 
frequently with their clinician counter parts in 
conferences and on specific cases. Also, in 
larger groups there tends to be multiple special-
ists in the same field and so there is ample depth 
and opportunity to discuss and work though 
complex cases. In intermediate sized pathology 
groups, a similar strategy has taken form, 
although not to the same extent. In these groups, 
most pathologists are generalists, but have sub-
specialty interests. Each pathologist with sub-
specialty interest takes on the responsibility of 
keeping up with a particular field and is respon-
sible for updating their pathology colleagues 
while at the same time serves as the point person 
with their clinical colleagues in that field. For a 
small practice, it is much more difficult to be up 
to date in all subspecialty fields. For this reason, 
smaller practices tend to liberally use expert 
consultation in areas outside their comfort zone. 
Therefore, we have at least three practice sys-
tems that attempt to address the knowledge 
needs of pathologists. It is not clear which sys-
tem is best or produces the least amount of 
errors. I am unaware of any studies that have 
attempted to directly measure the efficacy of 
these practice settings. Reports that have 
attempted to study differences between general-
ists and specialists in clinical practice offer 
some generality that may apply to pathology as 
well. These studies suggest that specialists were 
generally more knowledgeable in their area of 
interest and were quicker to adopt new treat-
ments, but also used more resources [43, 44]. 
There is a  suggestion that the quality of care by 
specialists exceeded care by generalist for 
selected conditions.
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Tight Time Constraints

A number of external pressures focus the need to 
have time constraints in surgical pathology. 
Regulatory mandates, while not strict, are often 
cited as a main reason to have good turnaround 
time. However, pressure from clinical colleagues 
and an inherent need to please our customers 
(patients and clinicians) have greater influence on 
our desire to produce a diagnostic result in the 
least amount of time possible.

The total turnaround time is usually not the 
real issue leading to errors, the problem is in 
batch work and time constraints. In an ideal envi-
ronment work would be evenly spaced and main-
tained at regular intervals with sufficient time to 
accomplish each task. Surgical pathology is prone 
to batch work and time constraints; specimens 
are typically delivered in batches and are acces-
sioned and processed in batches. After dissection 
and placement in cassettes, the tissue typically 
must be placed onto processors that begin at a 
certain point in time thus providing time con-
straints. This has a greater impact when the work-
load is heavier than usual or when fewer 
employees are available. This problem also 
applies to the pathologist at sign-out where cases 
are usually brought in batches. While the pathol-
ogist rarely has a definitive deadline to complete 
the work, there is pressure to get those cases done 
that day and maintain an adequate turn-around 
time. This pressure may be intensified if the 
pathologist has other commitments that occupy a 
portion of the day and the work should be com-
pleted before a long weekend or a vacation.

The net effect of batch work and time con-
straints is that people may skip over critical steps 
that assures proper handling, processing, and 
interpretation. This could include quality checks 
that were instituted to prevent errors such as dou-
ble checking two patient identifiers.

Hierarchical Culture

A hierarchical culture is one in which authority is 
not questioned for fear of retribution or more 
commonly to avoid the unpleasant consequence 

of such episodes. While this type of behavior 
 frequently is generational and cultural, it is 
 frequently encouraged or accentuated by the 
behavior of leadership. While this is often 
 unintentional, the pathologist’s mood and response 
to a simple event such as technologist bringing in 
additional tray of slides on a busy day may be suf-
ficient to initiate a technologist’s avoidance behav-
ior. It takes only a few similar episodes for a 
technologist to decide that avoidance is the best 
strategy for a harmonious work day. So when 
problems occur that may be addressed quickly as 
they occur, the choice is made to avoid communi-
cation and to let things stand. To alleviate this 
situation the pathologist or others in a position of 
authority have to remove that element of fear and 
discomfort that comes with bringing forth prob-
lems. This way, problems are managed in real 
time and are not allowed to fester.
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Meta-Analysis 101 for Pathologists 15

Meta-analysis is a statistical procedure that 
 integrates the results of independent studies with 
a similar research hypothesis, explores data het-
erogeneity and synthesizes summaries if appro-
priate [1]. Well conducted meta-analysis allows 
for objective integration and comparison of mul-
tiple study results and can also be used to explain 
the heterogeneity between study results [1]. The 
basic principles, applications, construction, and 
statistical methods of meta-analysis are discussed 
in more detail in Chap. 9 by Dr. Vamvakas. This 
statistical method has been applied to the integra-
tion of randomized controlled clinical trials in an 
attempt to estimate overall effects. Meta-analysis 
has been used in epidemiology to investigate the 
reasons for differences in risk estimates between 
observational studies and to discover patterns of 
differences among study results. In this chapter, 
we attempt to provide pathologists potentially 
interested in applying meta-analysis in their 
research with a simplified “how-to” guide to the 

performance of meta-analysis, using examples 
from our previous experience.

Evidence-based medicine (EBM) has advo-
cated the use of meta-analysis for systematic and 
quantitative analysis of randomized control tri-
als for over a decade [2]. Three general applica-
tions of meta-analysis include: (1) integration of 
the findings of studies with varying sample size 
but demonstrating treatment effect operating in 
the same direction, (2) investigation of the rea-
sons for disagreements among studies reporting 
contradictory treatment effects, and (3) integra-
tion of the findings of different studies with sim-
ilar research hypothesis but not attaining 
statistical significance due to small sample sizes 
or other factors that influence statistical power 
[3–5]. The results of the first type of studies are 
usually used for the design of definitive random-
ized controlled clinical trials (RCT) with an 
optimal cohort size that can provide level I evi-
dence. The results of the second type of studies 
can be very helpful to explain the reasons for 
contradictory results in studies using similar 
hypotheses. The use of meta-analysis to inte-
grate the results of underpowered, nonsignificant 
studies as an alternative to RCT in clinical 
research is controversial [5].
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Applications of Meta-Analysis  
in Anatomic Pathology

Anatomic pathologists have been slow to accept 
the basic tenets of EBM, although there is a recent 
increasing interest in their application to the spe-
cialty, so-called evidence-based pathology (EBP) 
[3–6]. The traditional apprenticeship based teach-
ing in anatomical pathology emphasizes the 
learning from the “experience of one’s teachers.” 
This learning model has great strengths as it helps 
transmit information in an interactive manner and 
provides students with the role models offered by 
various teachers, but it also has some of the dis-
advantages that EBM advocates have attributed 
to so-called Eminence-Based Medicine [6–9]. In 
particular, anatomic pathologists place great con-
fidence in the opinion and publications of their 
teachers and tend to disregard findings or recom-
mendations published by others that contradict 
them. In addition, the majority of literature in 
anatomical pathology comprises of case control 
studies, case series, case reports, and opinion 
based narratives where the importance of vari-
ables such as study design, sample size, patient 
selection bias, length of follow-up, treatment 
effect, and others is not emphasized [10]. 
Systematic reviews and meta-analysis provide 
the methodology to integrate information from 
the literature in a manner that is potentially more 
comprehensive and less subjective than ad-hoc 
literature reviews prepared by experts.

Only a few studies have attempted to use meta-
analysis in Anatomic Pathology [11–16]. For 
example, Faraji et al. evaluated renal epithelioid 
angiomyolipomas with meta-analysis in an attempt 
to identify various prognostic factors for this newly 
defined relatively unusual entity using the data 
available in 69 studies in the literature and demon-
strated that male gender, large tumor size, marked 
cytologic atypia, and extensive tumor necrosis 
portend an unfavorable outcome [14]. Anderson 
et al. used meta-analysis to evaluate the utility of 
immunohistochemical panels in determining the 
site of origin of metastatic malignancies. The 
results of their meta-analysis showed that studies 
evaluating the utility of immunohistochemistry 

using both primary as well as metastatic tumors 
provided correct identification in 82.3% cases as 
against 65.6% in the studies using only metastatic 
tumors. The authors thus confirmed that there 
exists an unmet need for additional definitive 
immunomarkers and also emphasized the impor-
tance of minimum performance measures while 
evaluating newer  diagnostic modalities [15]. 
Several novel prognostic markers are being evalu-
ated for melanoma, however none of these are 
incorporated into clinically relevant guidelines, 
staging systems, or standard of care for melanoma 
patients. Gould Rothberg et al. evaluated the rea-
sons for this disconnects using meta-analysis. 
Their conclusions reflect the current state of litera-
ture in anatomic pathology and emphasize the 
need for stringent adherence to reporting guide-
lines, test validation, and cohort selection [16]. We 
recently used meta-analysis to evaluate a variety of 
problems related to anatomic pathology and some 
of these materials are used to illustrate various 
aspects of the techniques in this chapter [11–13].

Meta-Analysis Methodology: A Step 
by Step Guide to the Analysis

The application of meta-analysis to the evaluation 
of data from the literature and/or own experience 
is relatively simple with the use of modern soft-
ware. We have performed our studies using 
Comprehensive Meta-analysis 2.0 (Biostat, Inc. 
Englewood, New Jersey). Several other commer-
cial softwares are available, including Clin Tool 
software (http://www.clintools.com/contact.html), 
Meta-analyst (http://tuftscaes.org/meta_analyst/) 
providing free online calculators for meta-analysis 
of binary, continuous and diagnostic data, Metastat 
(http://echo.edres.org:8080/meta/metastat.htm) 
and others.

Data Collection: Systematic Literature 
Review and Evidence Summaries

Meta-analysis is usually well suited for compar-
ing the effects of a particular variable of interest 
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in a test group using a well-matched control 
group to estimate odds ratios (OR). The first 
and usually most difficult and time consuming 
step in the application of meta-analysis to pub-
lished data is the performance of a systematic 
literature review to collect comprehensive data 
from the literature. As explained in previous 
chapters, systematic  literature reviews include a 
specific time period and explicit listings of 
database/s searched and search terms, in con-
trast to ad-hoc reviews that allow investigators 
to select references from the literature based on 
subjective criteria not specified in a manuscript. 
The data elements of interest for study with 
meta-analysis could be, for example, the effect 
of a particular treatment, the prognostic value of 
a test (e.g., survival, recurrence rate, other) or 
others. The data is organized in evidence sum-
maries in a manner that is suitable for analysis 
and as explained below. It is often practical to 
insert it into spreadsheets such as Excel 
(Microsoft, Redmond WA), in a manner that 
can be pasted directly into Comprehensive 
Meta-analysis 2.0 (Biostat, Inc. Englewood, 
New Jersey) or other software.

Unfortunately, it is often quite difficult to 
extract information that is suitable for meta-anal-
ysis from the medical literature because of the 
lack of reporting standards. Indeed, attempts at 
performing meta-analysis on published data can 
provide investigators with an eye-opening experi-
ence regarding the extensive variability in the 
manner that results are often reported in the ana-
tomic pathology and other medical literature [16]. 
For example, the data collected in various studies 
is frequently embedded in different areas of a 
manuscript, such as “Methods,” “Results”, and 
“Discussion.” Presence of protein expression by 
immunohistochemistry is often variably defined 
in different studies with lower limits for positivity 
ranging from 5 to 20% [17–20]. Outcomes such 
as survival and response to treatment are reported 
using variable definitions (e.g., overall survival, 
or disease specific survival), and using variable 
lengths of follow-up [21, 22]. Use of ambiguous 
terminology in medical publications is one of the 
most difficult to overcome barriers during the 
collection of data for meta-analysis [16].

Another common problem during the 
 collection of data for meta-analysis is that medi-
cal publications frequently describe only second-
ary data such as p values, sensitivity, specificity, 
or other selected results rather than listing the 
data collected during the study and used by the 
investigators in their statistical analysis. This type 
of secondary data does not permit reviewers or a 
reader to double check on the accuracy of the 
results reported in publications and does not make 
available to other investigators the data originally 
collected in a study that could be combined with 
the results of other studies reporting similar 
effects and analyzed with meta-analysis. With the 
advent of relatively inexpensive storage capabil-
ity in computer networks, the widespread use of 
the Web and the progressive migration of publica-
tions into electronic formats, it may be possible in 
the near future to develop new publication stan-
dards that encourage the storage of the primary 
data used by the authors of a publication in their 
calculations in “electronic appendices” that are 
made available to reviewers and readers and that 
could be used by investigators in future  studies. 
This data would probably need to be copyright 
protected, as currently text and tables are.

We will illustrate the performance of a sys-
tematic review, collection of data, and prepara-
tion of evidence summaries for meta-analysis 
using examples from our recent study evaluating 
the prognostic value of the 2004 World Health 
Organization (WHO) histologic classification of 
thymomas [13, 23]. In our study, we elected to 
query the English literature for the period 1999–
2007, as a previous classification scheme for thy-
momas proposed by WHO in 1999 was quite 
similar to the 2004 version being investigated, 
using the PubMed database of the National 
Library of Medicine and the following search 
terms: thymomas, pathology, prognosis, and/or 
stage. We arbitrarily elected as an inclusion crite-
ria in the meta-analysis, availability of 5 years 
minimum of clinical follow-up. The search iden-
tified 15 studies with 2,192 thymoma patients 
classified according to WHO histologic type and 
followed postoperatively for longer than 5 years 
[13]. Survival and recurrence, by WHO histologic 
type, were selected as the variables of interest. 
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As the study was not designed to investigate the 
effect of particular treatment on a test group, the 
usual application of Comprehensive Meta-
analysis 2.0 (Biostat, Inc. Englewood, New 
Jersey) software, we compared the number of 
patients being alive or dead at follow-up, by two 
histologic types at a time, one representing a “test 
group” and the other a “control group.” As the 
meta-analysis was  performed comparing the 
prognosis of patients with two different WHO 
histologic types of type at a time, for example 
those of thymomas A and AB, and the software 
needs the number of patients in each category to 
estimate odds and OR, we collected four data 
points from each study: total number of thymoma 
A patients, number of thymoma A patients alive 
at follow-up, number of thymoma AB patients, 
and number of thymoma AB patients alive at 
follow-up. The evidence summary of these data 
is shown in Table 15.1.

Data Analysis – Calculation of Odds 
Ratios, Preparation of Forest Plots, 
and Selection of Model to Be Used 
for Meta-analysis

Selected columns from Table 15.1 were readily 
imported into Comprehensive Meta-analysis 2.0 
(Biostat, Inc. Englewood, New Jersey) software 
and OR, log OR, and standard errors were auto-
matically estimated for each study, as shown in 
Fig. 15.1. Please note that the software estimates 
OR and other statistics only for studies that 
include an “event.” In this example, an “event” 
requires that a study report some patients that 
did not survive, resulting in smaller numbers of 
“survived patients” than “total number of 
patients” in either the thymoma A or AB groups. 
Studies such as those by Kim, Bedini, and others 
that do not report “events” for these particular 
subsets of thymoma patients, resulting in OR = 1, 
are not included in the meta-analysis [24, 25]. 
The investigator can also elect to exclude from 
meta-analysis the data from selected studies that 
are considered inadequate because of their design 
characteristics, small sample sizes, or other 
technical flaws. In our example, we included all 

15 studies identified by the systematic review, to 
avoid introducing another source of potential 
bias.

Once the information is entered in the  software, 
the software eliminates from analysis the data 
from studies that report events, weighs the data of 
the remaining studies according to the cohort size 
evaluated in each publication, and performs the 
statistical analysis, as shown in Fig. 15.2. The fig-
ure shows, from left to right, the model used for 
the analysis, as explained below, the studies eval-
uated, statistics for each study including OR, 
lower limit, upper limit, Z-value and p-value and 
a forest plot showing in a graphical manner the 
OR, and 95% confidence intervals for all studies. 
It is beyond the scope of this chapter to explain 
the rationale behind the use of fixed or random 
models to evaluate data in meta-analysis. In gen-
eral, the fixed model assumes that the effect size 
of all the studies is within a range that does not 
need to be normalized, so the effect size of each 
study is left as constant. In the random model it is 
assumed that there is some variability in the effect 
sizes of different studies due to variables such as 
different sample sizes and others. The analysis of 
effect sizes using random models applies a math-
ematical formula that normalizes the effects sizes 
of all studies toward an overall mean effect size, 
in an attempt to minimize the effect of design dif-
ferences between studies. In our study of thymo-
mas and others we have analyzed the data using 
both fixed models and random models and have 
generally obtained similar results [11–13].

Figure 15.2 shows that there are no significant 
survival differences between patients with A and 
AB thymomas, in any of the studies with p values 
>0.05. The bottom row shows the statistics for 
the entire population of patients from all the 
selected studies, calculated using a fixed model; 
it also shows a nonsignificant result with p = 0.544. 
The same data can be viewed using high resolu-
tion graphics that exhibit in more detail the char-
acteristics of the forest plot, as shown in Fig. 15.3. 
Each horizontal line represents a study. The verti-
cal lines show different OR, 0.01, 0.1, 1, 10, and 
100. The OR from each study is summarized by a 
square. The size of each square is proportional to 
the weight being assigned to the results of each 
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study, usually as a result of the cohort size. 
The bottom of the forest plots show a diamond 
 summarizing the integrated odds ratio and 95% 
confidence intervals for all studies in the analysis. 

The width of the diamond is proportional to the 
overall 95% CI. Please note that all squares and 
the diamond are close to the vertical line repre-
senting an OR of 1.

Fig. 15.1 Tabulation of survival data of thymoma patients 
stratified by WHO histologic type in the meta-analysis 
software (Comprehensive Meta-analysis 2.0 [Biostat, Inc. 
Englewood, NJ]). The left hand side columns list the 
names of various studies, the total number of patients, and 
the number of patients surviving in each histologic type. 
The right hand side columns  provide the odds ratio, the 

log odds ratio with standard error for survival differences 
in patients with thymoma type A vs. patients with thy-
moma type AB. The software computes statistics only for 
those studies in which an event (death or recurrence) has 
occurred (from Marchevsky et al. [13], with permission of 
John Wiley and Sons)

Fig. 15.2 Statistical analysis computed by the software. 
The figure shows, from left to right, the model used for the 
analysis, as explained below, the studies evaluated, statistics 

for each study including OR, lower limit, upper limit, 
Z-value and p-value, and a forest plot showing in a graphical 
manner the OR and 95% confidence intervals for all studies
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Data Analysis: Evaluation of the 
Statistical Significance of the Results 
Using Various Statistical Tests

In addition to the p values shown in Fig. 15.3 
and the forest plot, the software provides more 
detailed statistics in various tables. For exam-
ple, Fig. 15.4 shows the effect sizes of the data 
using fixed and random models, with 95% CI, 
results of 2-tailed t-test and other statistics. 
Pathologists attempting to evaluate the signifi-

cance of meta-analysis beyond a simple under-
standing of p  values probably need to enlist help 
from  professional statisticians.

Evaluation of Potential Data 
Heterogeneity and Publication Bias

Meta-analysis integrates the results of data 
 collected by other investigators under somewhat 
variable conditions, raising questions as to 

Rena

Kim

Bedini

Park

Rea

Okumura

Reiker

Chalabreysse

Statistics for each study

2.273

1.596

2.072

1.531

3.561

5.756

0.078

0.533

1.366

Lower limit

0.249

0.069

0.102

0.066

0.172

0.322

0.004

0.029

0.499

20.741

37.077

42.210

35.526

73.703

102.868

1.400

9.708

3.742

0.728

0.291

0.474

0.265

0.822

1.190

–1.732

–0.425

0.606

p-Value

0.467

0.771

0.636

0.791

0.411

0.234

0.083

0.671

0.544

Odds ratio and 95% CI

0.01 0.1 1 10 100
Thymoma A Thymoma AB

Meta Analysis

Study name

Z-ValueUpper limitOdds ratio

Fig. 15.3  Forest plot as computed by the software. The 
right hand side of the figure shows the Forest plot com-
prising of vertical lines which represent odds ratios 
(OR) of 0.01, 0.1, 1, 10, and 100. Each horizontal line 
represents the 95% confidence interval (CI) for each 
study. The square size represents the cohort size of each 
study. The diamond at the bottom of the graph repre-
sents the overall odds ratio. The width of the diamond is 

proportional to the overall 95% CI. All the horizontal 
black lines corresponding to the CI of each individual 
study cross the vertical black line corresponding to the 
OR of 1 indicating lack of significant survival differ-
ence between patients with thymoma type A and type 
AB. Also the diamond giving the integrated odds ratio 
intersects the vertical line corresponding with odds 
ratio of 1

Fig. 15.4 Range of statistics computed by meta-analysis softwares
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whether the results obtained with this methodol-
ogy are reliable. This is a particular problem in 
anatomic pathology as diagnoses are frequently 
used as classifiers or dependent variables in vari-
ous studies and there is a certain degree in 
 interobserver diagnostic variability, as discussed 
in other chapters. Heterogeneity is defined as 
 differences in results between studies due to 
 variations in the characteristics of the popula-
tions being investigated, methodology used for 
data collection, various forms of bias, and 
how the outcome is measured and interpreted. 
Heterogeneity becomes significant when data 
variability between studies is greater than it 
would be expected from sampling variation alone. 
Publication bias occurs when the publication of 
research results depend on their nature and direc-
tion [39]. It often results from the tendency for 
researchers to report the results of studies that are 
“positive,” and show a statistically significant 
finding and for reviewers to reject results that do 

not conform with what has been previously been 
reported. Publication bias results in the so-called 
file drawer problem, that many studies are con-
ducted but not published because they did not 
produce statistically significant results, poten-
tially resulting in information that is uknown in 
the literature and skewed toward positive results.

Various statistical methods have been designed 
to evaluate for data heterogeneity and publication 
bias. Heterogeneity can be explored with graphi-
cal methods such as forest plots and radial plots 
and various statistical tests such as the Q-test, 
meta-regression, and others. Forest plots allow 
readers to compare the results of all studies at a 
glance, as shown in Fig. 15.3.

Publication bias is explored with funnel plots 
and various tests designed to test for funnel test 
of asymmetry, such as the rank correlation 
method, Egger’s linear regression, trim and fill 
and  others. An example of funnel plot is shown in 
Fig. 15.5. The plot shows a vertical line, two 
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Fig. 15.5 Evaluation of heterogeneity between study 
results by Funnel plot. Comparison of Thymomas A and 
AB amongst various studies shows the data to be het-
erogenous. The plot shows a vertical line, two lateral 
curves, and multiple small circles. Each circle represents 
a single study. The height of each circle represents the 
weight being assigned to the results of the study. In 

instances when the data from various studies is homoge-
neous, the curves are close to the vertical line and all 
circles are clustered near the vertical line in a symmetri-
cal distribution. In this analysis, the plot shows six stud-
ies to the left of the vertical line and only two in the 
opposite direction, indicating marked heterogeneity of 
the data
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 lateral lines and multiple small circles. Each circle 
represents the results of a single study. The height 
of each circle represents the weight being assigned 
to the results of the study. Funnel plots of homo-
geneous data usually show the lateral lines close 
to the vertical line and all circles clustered near 
the central vertical line in a symmetrical distribu-
tion balanced in height and number of circles on 
both sides of the vertical line. In contrast, 
Fig. 15.5, resulting from the meta-analysis com-
paring thymomas A with thymomas AB shows 
considerable data heterogeneity: six circles are to 
the right of the vertical line and one other to the 
left of the vertical line. Figure 15.6 shows a com-
posite of the various statistical tests provided by 
Comprehensive Meta-analysis 2.0 (Biostat, Inc. 
Englewood, New Jersey) software to evaluate for 
funnel test asymmetry.

It is beyond the scope of this chapter to 
review in detail the theory and applications of 
various statistical tests for the evaluation of data 
 heterogeneity and publication bias during meta-
 analysis. In our previous research, we have used 
funnel plots and the Egger’s regression intercept 
test to evaluate our data.

Brief Review of Our Experience 
with the Use of Meta-analysis  
for the Evaluation of Selected 
Problems in Anatomic Pathology

We have used meta-analysis in our laboratory 
for the evaluation of the prognostic role of micro-
metastases and isolated tumor cells in patients 

Fig. 15.6 Examples of statistics computed by meta-analysis software
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with lung cancer, the clinical applicability of 
various tests for the evaluation of epidermal 
growth factor receptor (EGFR) in lung cancer 
patients, and the study of the prognosis of 
patients with thymomas, relatively infrequent 
neoplasms that are  associated with indolent 
 clinical behavior [11–13].

Use of Meta-analysis for the Evaluation 
of Prognostic and Predictive Features 
and for the Integration of Personal 
Experience with Published Data

Our recent study of the prognostic role of iso-
lated tumor cells and micrometastases in the 
intrathoracic lymph nodes of lung cancer patients 
provides an example of how to use this statistical 
method for the evaluation of prognostic features 
in anatomic pathology, integrating data from 
own experience with that previously published 
in the literature [40]. A few studies of the prog-
nostic role of these small nodal deposits, 
described under various names such as occult 
metastases, micrometastases, and others have 

suggested that they are associated with poor 
prognosis and decreased survival rates. In con-
trast, several other studies, including one from 
our laboratory, have not been able to demonstrate 
a significant  association between the presence of 
isolated tumor cells or micrometastases and sur-
vival [41] (Table 15.2). To evaluate this topic in 
a more formal way we reviewed our experience, 
performed a systematic literature review and 
analyzed all available results with meta-analysis. 
Our recent experience consisted of 4,148 
intrathoracic lymph nodes from 266 consecutive 
clinical stage I non-small lung cancer patients 
evaluated with hematoxylin and eosin stained 
slides and keratin immunostains for the presence 
of isolated tumor cells and micrometastases. The 
systematic literature review identified 13 studies 
providing data on the prognostic role of micro-
metastases in 835 patients detected with either 
immunohistochemistry or molecular methods, 
including our current data, with non-small cell 
carcinomas. Table 15.2 shows the evidence sum-
mary of the data.  Meta-analysis of data from the 
835 non-small cell carcinoma of the lung patients 
showed that there was no significant correlation 

Table 15.2 Evidence summary: immunohistochemical detection of micrometastases in the regional lymph nodes 
of NSCLC patients

Author and  
number of  
cases (n)

Study 
design

Evidence 
level IHC

pN0 to 
PN0 (I+)

pN0 to 
pN1mi

pN0 to 
pN2mi

pN1 to 
pN2mi

Statistically significant 
difference in survival
pN0 vs. 
pN1mi

pN1 vs. 
pN2mi

Melphi (16) CS IV CK, CK7,  
CK 19

NA 2 NA NA NA NA

Rena (87) CS IV AE1/AE3 11 3  1 NA No NA
Izbicki (93) CS IV Ber-Ep4 NA 16 NA 6 No No
Marchevsky (60) CS IV CK  7 3  0 1 No No
Ishiwa (54) CS IV CK NA 11  7 1 No No
Osaki (115) CS IV AE1/AE3 NA 19 13 NA Yes NA
Passlick (54) CS IV Ber-Ep4 NA 5  8 2 No NA
Gu (49) CS IV CK, p53 NA 9 13 NA Yes NA
Wu (103) CS IV AE1/AE3 NA 13  8 NA Yes NA
Goldstein (80) CS IV CK, Ber-Ep4 NA 2  1 NA No NA
Hashimoto (31) CS IV Cam 5.2 NA 8  9 5 No No
Nicholson (49) CS IV CK NA 3 NA NA No No
Maruyama (44) CS IV Cam 5.2 NA 19 12 NA Yes NA
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between the presence of micrometastases detected 
with either immunohistochemistry or molecular 
methods and prognosis and that there was no 
sufficient data to evaluate for the  prognostic role 
of isolated tumor cells in patients with non-small 
cell  carcinoma of the lung. The results of the 
meta-analysis performed with the micrometastases 

data  collected using immunohistochemistry, 
with the corresponding forest plot are shown in 
Fig. 15.7. Figure 15.8 shows the forest plot of 
results from the literature using molecular meth-
ods for the detection of micrometastases, also 
nonsignificant. The results of both meta-analysis 
indicate that detection of micrometastases does 

Rena

Mineo
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Statistics for each study
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Lower limit
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p-Value
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0.240

0.535

0.815

0.805
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0.921

0.338
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Fig. 15.7 Results of meta-analysis evaluating the prog-
nostic value of micrometastases detected with immuno-
histochemistry in patients with non-small cell carcinoma 
of the lung. The meta-analysis allowed for the quantitative 

integration of our own results with those identified in the 
literature by a systematic review. Please note that the 
results are not significant, as shown by the forest plot and 
summary statistics
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Wang

Statistics for each study
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Lower limit
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Z-Value p-Value

0.266

0.642

0.306

0.138

Odds ratio and 95% CI

0.01 0.1 1 10 100
pN0 pN1(mi)

Meta Analysis

Study name

Odds ratio

Fig. 15.8 Results of meta-analysis evaluating the prog-
nostic value of micrometastases detected with molecular 
 methods in patients with non-small cell carcinoma of the 

lung. Please note that the results are not significant, as 
shown by the forest plot and summary statistics
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not portend prognostic significance. However, 
evaluation of the results of our meta-analysis 
with power analysis demonstrated that 3,060 
patients followed for 60 months would be 
needed to achieve 80% power in a study designed 
to detect survival differences between patients 
with negative nodes and micrometastases.

Use of Meta-analysis for the  
Study of Infrequent Diseases  
that are Associated with Indolent 
Clinical Course: Opportunities  
for National and International 
Collaborations

Our recent study with meta-analysis showing 
that the WHO classification of thymomas pro-
vides significant prognostic information for 
selected stage III thymoma patients can be used 
to  illustrate the value of this methodology for 
the integration of data collected at different 
international hospitals [42]. Thymomas and thy-
mic carcinomas are relatively uncommon medi-
astinal lesions that are difficult to study because 
no institution can collect the large number of 
patients required to achieve significant statisti-
cal power and the survival effect size is small 
because the tumors usually follow an indolent 
clinical course, with only some tumors recur-
ring and/or metastasizing 10 years or longer 
after initial treatment. It is very difficult to orga-
nize a randomized clinical trial to study thymo-
mas. Indeed, our systematic literature review 
showed that no such studies have been reported 
[12, 13]. Previous studies of thymoma patients, 
including two studies with meta-analysis per-
formed in our laboratory, showed that WHO 
histologic type and Masaoka stage provide 
 significant prognostic information for thymoma 
patients. However, there is only one study 
where prognosis was evaluated by WHO histo-
logic type of thymoma previously stratified 

by Masaoka stage [30]. This information is 
important as therapy is usually selected on the 
basis of stage rather than histology. As informa-
tion about thymoma patients stratified by both 
WHO histologic type and stage are not available 
in the literature, we contacted by email the 
authors of recent studies reporting the prognosis 
of thymoma patients categorized using the WHO 
scheme and were able to collect data from 905 
patients treated at hospitals in Japan, Korea, 
Italy, Germany, and the United States, formatted 
in a manner suitable for meta-analysis. 
Table 15.3 shows the evidence summary listed 
in these data. Meta-analysis showed than when 
stratified by stage, significant survival differ-
ences could be estimated in patients with stage 
III disease, between thymomas A and B2 and A 
and B3. Figure 15.9 shows the meta-analysis 
comparing the survival of stage III patients with 
thymomas A and B2, with the corresponding 
forest plot. The latter shows that most studies 
show OR < 1 and that evaluation of the data with 
the fixed model yields p = 0.003.

Does Meta Analysis have a Future as 
a Useful Statistical Tool in Anatomic 
Pathology?

As illustrated with the previous examples, meta-
analysis could be used more widely in anatomic 
pathology to integrate the results of multiple 
studies in a more precise manner than with cur-
rently used ad-hoc summary tables. Experience 
with this methodology will hopefully persuade 
pathologists about the need to report data in a 
more consistent and explicit manner so that it 
could be readily extracted in the future by other 
investigators. Meta-analysis could also be used 
more often to estimate effect sizes across multi-
ple studies in efforts at integrating the results 
from current studies with those previously pub-
lished in the literature.
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Immunohistochemistry (IHC) has existed as an 
area of scientific inquiry for 70 years, and it truly 
has changed the way in which anatomic pathology 
is practiced during that span of time [1, 2]. 
Conventional histochemistry antedated IHC by 
almost a century, and had itself been a huge tech-
nological breakthrough. However, until the avail-
ability of IHC, scientists and physicians were 
limited in their ability to identify cellular products 
in situ, as histochemical methods were limited in 
their capacity to identify many cellular products 
that may have diagnostic, prognostic, or predictive 
value in the practice of Medicine [3–6]. The same 
comment can be made for another adjunctive his-
tomorphological procedure, transmission electron 
microscopy (TEM) [7–10], which had been intro-
duced by Ernst Ruska – a physicist – in 1931 [11].

Surprisingly, and rather inexplicably as there is 
little doubt that TEM significantly extended the 
analytic potentials of light microscopy and his-
tochemistry, both TEM and IHC were only slowly 
integrated into the clinical (hospital-based) prac-
tice of pathology. Indeed, ultrastructural analysis 

was still being “introduced” as a useful procedure 
for patient care 50 years after its inception [8], and 
IHC did not enjoy widespread interest or applica-
tion by practitioners until around 1980 [2].

Perhaps because of this protracted evolution, 
little attention was given, until relatively recently, 
to the role of quality assurance (QA) in either 
TEM or diagnostic IHC (DIHC). In particular, 
pathologists and other physicians especially tended 
to have a naïve expectation that immunostains 
were merely formulaic – in other words, if one 
used appropriate reagents and followed prescribed 
procedural steps, an optimal result was expected 
to obtain. That attitude likely derived from experi-
ence with histochemistry, where such provisions 
would typically produce the expected outcome. In 
addition, there is limited consensus about how to 
use IHC tests for the work-up of various clinico-
pathologic entities. Different investigators propose 
the use of various IHC tests based on the results of 
selected studies, and there are few expert- consen-
suses or evidence-based guidelines to guide prac-
titioners during the selection of the antibodies that 
should be tested during the work-up of specific 
differential diagnoses. There is also a lack of 
guidelines suggesting how to interpret the results, 
particularly when there is some overlap in  findings, 
as IHC results are often not included as diagnostic 
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criteria in the various classification schema 
 proposed by widely respected groups of experts 
selected by the World Health Organization (WHO) 
and other professional groups.

As we shall consider shortly, DIHC is anything 
but mechanical. Many biological and chemical 
factors have a meaningful impact on the final 
results of this method, and these must be addressed 
individually wherever possible. The topic of how 
to select the most effective antibodies that need to 
be tested for various differential diagnoses, prob-
lems related to the over utilization of IHC, and 
the fervent but misdirected hope that this method-
ology can be employed in a nondiagnostic setting 
to provide prognostic and predictive data will be 
discussed. Finally, technical alternatives to immu-
nohistologic evaluation will be summarized.

Diagnostic Immunohistochemistry: 
An Historical Perspective

The concept of adding a detectable chemical “tag” 
to target-specific reagent antibodies seems today to 
be a straightforward, if not simple, idea. Never-
theless, such a conclusion is purely contextual. 
In 1940, the structure of antibodies was only rudi-
mentarily understood, and the notion of attaching a 
visible chromophore to them was completely novel. 
A 27-year-old medical resident from Boston, MA – 
Dr. Albert Hewett Coons (Fig. 16.1) – developed 
the idea while on vacation in Europe [12]. At least 
one German colleague – Dr. Kurt Apitz of Charite’ 
Hospital in Berlin – thought little of it, for good 
reasons [12]. The necessary process of joining 
chemicals to antibodies had never been attempted, 
and synthesis of the chemical “tags” that Coons 
had in mind – fluorescent molecules – also was a 
fledgling area. Finally, no microscope capable of 
visualizing fluorophores then existed.

Undeterred, Coons returned to Boston to work 
out each of these problems. By 1941, he and his 
colleagues had demonstrated not only the feasi-
bility but also the applicability of fluorescent 
immunohistology for the localization of particu-
lar protein targets in human tissues [13, 14] 
(Fig. 16.2). That development launched the entire 
scientific discipline of IHC and earned Coons the 
prestigious Albert Lasker Award in 1959 [15].

Fig. 16.1 (a) Albert Hewett Coons, M.D. (1912–1978), 
the originator of immunohistochemistry. Dr. Coons was 
given the Lasker Award in 1959 for that contribution. (b) In 
direct immunofluorescence methods, as devised by Coons, 
a fluorophore is attached to a reagent antibody, which is 
specific for a polypeptide epitope in substrate tissue

Fig. 16.2 Immunofluorescence study for alpha-methyl-
acyl-CoA-racemase, seen as a red-orange signal in this 
section of prostatic adenocarcinoma
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Probably because immunofluorescence mic-
roscopy does not allow for a simultaneous 
appreciation of morphological detail, the proce-
dure did not enjoy widespread clinical use and 
was primarily regarded as a research tool. There 
were exceptions to that statement, however, prin-
cipally represented by the diagnostic use of fluo-
rophores in renal pathology and dermatopathology 
[16–19]. Fundamentally, and especially in the 
practice of hospital-based pathology, an expanded 
application of DIHC depended on further devel-
opment of visible  chemical “partners” for reagent 
antibodies.

The next step in this evolution was taken in the 
area of TEM, where it was realized that certain 
electron-dense (and therefore visible) chemical 
moieties – such as ferritin, osmium, and gold salts 
– could be bound directly to reagent antibodies, as 
fluorescein isocyanate had been [20–23]. Hence, 
those reagents provided another method for local-
izing protein targets in substrate tissues, but at an 
ultrastructural level. An additional development 
involved the use of a gold-protein-A adduct as an 
indicator in TEM, preceded by incubation of target 
tissues with unlabeled reagent antibody (n.b.: pro-
tein-A is a proteinaceous product of Staphylococcus 
aureus, and is capable of binding to the Fc portion 
of all immunoglobulins) [24]. Once again, how-
ever, ultrastructural IHC was impractical for most 
practicing anatomic pathologists, because they did 
not have access to electron microscopes and the 
technique in question was quite tedious.

Finally, in the late 1960s, Ludwig Sternberger 
(Fig. 16.3) and colleagues developed an effective 
immunohistological procedure that could be used 
with formalin-fixed, paraffinized tissue sections and 
the light microscope [25, 26]. Three molecules of 
horseradish peroxidase were complexed with two 
antiperoxidase antibodies by precipitation from a 
mixture of enzyme and crude serum. This pentag-
onal structure, dubbed peroxidase-antiperoxidase 

(PAP) complex by Sternberger, had the intriguing 
attribute of being thermodynamically stable inde-
pendent of antiperoxidase serum quality or affinity 
(and thus easy and cheap to prepare). The utility of 
PAP as a delivery vehicle for the reporter enzyme 
was also independent of affinity, since linkage of 
PAP to a specific  tissue-bound reagent antibody 
depended solely on the affinity of the secondary 
(bridge) antibody for the free Fc fragments of PAP 
and the primary reagent (Fig. 16.4). Antibodies 
comprising the PAP complex were raised in the 
same animal hosts as those which produced the pri-
mary reagent antibodies, whereas the secondary 
“bridge” antibody derived from another species. 
The most common early example of such a con-
struct was a rabbit primary antibody-sheep antirab-
bit “bridge” antibody-rabbit PAP complex [26].

Peroxidases are redox enzymes that catalyze 
reactions between electron donors and recipients, 
according to the following equations:

Fig. 16.3 Ludwig Sternberger, M.D., who, along with 
colleagues, devised the first practical light microscopic 
technique in immunohistochemistry in the late 1960s – 
the peroxidase-antiperoxidase method

or

 + ® +2 2 2Acceptor H O oxidized acceptor H O.

- +¢ + + ® + ¢ROOR electron donor (2e ) 2H ROH R OH,
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In the classical PAP technique, hydrogen per-
oxide (H

2
O

2
) is used as the electron donor, and 

3-3¢-diaminobenzidine tetrahydrochloride – which 
forms a colored precipitate when oxidized – is the 
electron recipient. The final result is a light-micro-
scopic preparation in which brown-black labels 

mark the sites of specific primary antibody 
 binding, where target proteins reside in the tissue 
(Fig. 16.5). That construct is responsible for the 
slang term “brown stains,” in reference to DIHC.

Finally, pathologists and other scientists had a 
practical, relatively rapid (24 h), and ecumenical 
alternative technique to immunofluorescence 
microscopy that could be used in everyday prac-
tice. It seemingly remained only for an increasing 
number of specific primary antibodies to be raised 
and marketed, before the entire panoply of human 
proteins could be localized in tissue sections.

Realities and limitations of the PAP technique 
soon lessened that grand expectation. It became 
evident that some proteinaceous targets existed in 
only low densities in various tissues. Moreover, 
the standard process of formalin-fixation and 
paraffin-embedding appeared to denature, mask, 
or cross-link some proteins in such a way that 
primary antibodies could not bind to them 
[27, 28]. Depending upon the particulars of tissue 
procurement and processing, PAP stains for any 
given target in any given specimen might be 
strongly reactive, weakly positive, or altogether 
negative, in an unpredictable way.

Fig. 16.4 In the peroxidase-antiperoxidase method, an 
unlabeled reagent primary antibody is linked to a tertiary 
reporter complex comprising two antibodies and several per-
oxidase molecules. The first and third antibodies are raised 

in the same animal species, whereas the second “bridge” 
antibody is a generic reagent raised against  animal immuno-
globulins representing the primary reagent and PAP com-
plex (e.g., rabbit primary – sheep antirabbit – rabbit PAP)

Fig. 16.5 Dense brown-black precipitates of diamin-
obenzidine-HCl are seen at sites in formalin-fixed human 
tissue where anti-human keratin primary antibodies have 
bound in a paraffin section. The peroxidase-antiperoxi-
dase method was employed as the detection system
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This chain of events brings us to a crucial 
watershed in the development of DIHC as a 
method, and philosophies about how the tech-
nique should be used. For practicing pathologists, 
the aim of immunohistology was, and is, to 
 visualize molecular constituents of tissue that 
have diagnostic importance. Inexplicable vari-
ability in staining intensity, as mentioned in the 
previous paragraph, threatens that goal and was 
quickly recognized as a serious potential source 
of interpretative error. For example, if S100 pro-
tein were to be found in a metastatic undifferenti-
ated large-cell malignancy, in the absence of 
keratin, the probable diagnosis would be one of 
metastatic melanoma. However, keratin might 
actually be present in the tumor cells but missed 
because of technical problems in tissue process-
ing or immunohistochemical procedure. Keratin-
positive, S100-positive neoplasms are represented 
by carcinomas that originate in selected sites [29]. 
Therefore, failure to detect keratin – or other sim-
ilarly dispositive markers – in such lesions would 
produce a significant mistake in the generation of 
categorical data, an issue related ultimately to 
poor method sensitivity. On the other hand, given 
that small quantities of a given marker of diag-
nostic importance might be expressed in diagnos-
tically problematic settings (keratins in melanoma, 
to extend the argument), there also needs to be an 
appreciation for the relationship between high 
method sensitivity and errors in categorical data.

With this in mind, it is important to realize that 
quantification of results in DIHC is meaningful only 
in a binary context – i.e., immunostains are ideally 
either positive or negative. As a consequence of that 
premise, a cardinal objective for diagnostic patholo-
gists became the maximization of specific immuno-
labeling, through a variety of methods, while at the 
same time maintaining minimal background “noise” 
in IHC preparations [30]. To a large extent, that 
intent and practice remain in place today.

In line with our earlier comment that masking, 
degradation, or cross-linking of available epitopes 
may occur in formalin-fixed tissue, compensatory 
efforts at signal amplification were two-pronged. 
One mode of attack on the problem was to devise 
ever more sensitive IHC techniques, in the hope of 
recognizing low levels of an available protein target. 
The best known of higher-sensitivity alternatives to 

the PAP procedure was developed in the late 1970s 
by Hsu (Fig. 16.6) and colleagues [31–33]; namely, 
the avidin-biotin-peroxidase complex (ABC) proce-
dure. That innovative  technique  capitalized on the 
ability to attach biotin molecules to secondary anti-
bodies, and also the capacity to build large reporter 
complexes which include avidin, biotin, and horse-
radish peroxidase. The latter composites can be 
attached to the biotinylated secondary antibody, 
which is, in turn, bound to the Fc portion of a  specific 
primary reagent antibody. The result compounds the 
number of peroxidase molecules that are associated 
with any one protein target, far beyond the biochem-
ical capability of the PAP technique (Fig. 16.7). 

Fig. 16.6 Su-Ming Hsu, M.D., Ph.D., the principal 
developer of the avidin-biotin-peroxidase complex (ABC) 
procedure in immunohistochemistry

Fig. 16.7 The avidin-biotin-peroxidase complex method 
offers a high level of sensitivity because of the multimeric 
nature of the peroxidase-bearing “reporter” molecule
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Therefore, an amplification of the immunostaining 
signal is the predictable outcome.

Later variations on that theme included labeled 
streptavidin-biotin-peroxidase (LSAB), ABPAP 
(serially combined PAP and ABC procedures), 
and alkaline phosphatase-antialkaline phos-
phatase (APAAP) methods [34–38], and, more 
recently, a paradigm in which approximately 20 
secondary antibodies from more than one animal 
source are attached polymerically to a dextran 
backbone that also carries >100 peroxidase mol-
ecules [37, 39] (Fig. 16.8). That approach, called 
dextran-polymer-based (EnvisionR), and other 
proprietary formulations, IHC obviates the need 
for separate labeled secondary antibodies from 
differing animals. At the same time, it greatly 
increases final immunostaining intensity in most 
applications.

All of those approaches for signal maximiza-
tion center on the notion of increasing the num-
bers of signal molecules that are bound to a target 
protein in tissue. They are all effective in visual-
izing low densities of antigens whose epitopes 
are still at least partially open to bind to primary 
antibodies. However, what could be done about 
desired targets with completely “masked” or 
cross-linked epitopes?

Trading, perhaps, on pathologists’ experiences 
in immunohematology – where it has been known 
for decades that controlled enzymatic digestion 
could unmask certain antigens on erythrocytes 

[40, 41] – the same procedure was applied to  
paraffin sections in DIHC in the late 1970s. Pepsin, 
trypsin, proteinase-3, ficin, pronase, papain, and 
bromelain were, and still are, employed in this set-
ting [42–47]. Predictably, the results demonstrated 
that different enzymes affected various targets dif-
ferently. In other words, one catalyst might 
enhance immunoreactivity for protein “A” but 
decrease labeling for protein “B.” Another off-
shoot of this work was the realization that certain 
classes of tissue constituents were routinely 
masked by formalin fixation; a prime example is 
represented by the intermediate-filament proteins, 
including keratin, vimentin, desmin, neurofila-
ment, and glial fibrillary acidic protein [28]. Those 

Fig. 16.8 In the dextran-polymer-based system of immu-
nohistochemistry, several secondary “link” antibodies, 
from different animal hosts, are bound to a dextran carrier 
that also carries multiple peroxidase molecules

Fig. 16.9 (a) Immunostaining of a formalin-fixed, poorly 
differentiated, prostatic adenocarcinoma for pankeratin, 
with no epitope-retrieval techniques. There is no discern-
ible reactivity. (b) Prior treatment of the sections with 
ficin “unmasks” the target antigen and allows the antikera-
tin antibody to bind



26716 Evidence-Based Practices in Applied Immunohistochemistry

markers can only be visualized optimally using 
some type of unmasking procedure (Fig. 16.9). 
The same statement applies to virtually all intra-
nuclear proteins [48] (Fig. 16.10).

The next major advance in this area of DIHC 
occurred in the early 1990s. Empirical experience 
showed that the controlled heating of paraffin sec-
tions, when immersed in ionic solutions in a micro-
wave oven or a steamer, could accomplish the same 
results as proteolytic unmasking methods [49–55]. 
Thus, the term “heat-induced epitope retrieval” 
(HIER) was coined. Today, this process is a de 
rigueur element of practical immunohistology. In 
similarity to enzymatic digestion, HIER augments 
the intensity of immunolabeling for some markers 
and decreases it for others, vis-à-vis IHC proce-
dures that omit an unmasking step [55].

But, what, exactly, is being “undone” by prote-
olysis or HIER? To this day, the answer to that 
question is still vague. Several hypotheses have 
been advanced to account for epitope unmasking. 
These include the breakage of fixation-induced 
coupling of “irrelevant” but sterically interfering 
large proteins to peptide epitopes; the abrogation 
of electrostatic, van der Waal-like charges between 
epitopes and Fab fragments of reagent antibodies; 
dissolution of cagelike calcium complexes around 
epitope sequences; and a reversal of Mannich 
reactions between proteins [56–59]. The latter are 
organic reactions featuring the amino-alkylation 
of acidic protons, placed next to carbonyl groups 
during formaldehyde fixation [58]. On the other 
hand, there is an increasing understanding that the 
tertiary structure of the target epitope (liner vs. 
conformational) may greatly influence the ability 
of retrieval methods to improve immunoreactivity 
in routinely processed materials.

Other tissue fixatives have been evaluated as 
alternatives to formalin, including solutions 
based on methyl alcohol, ethyl alcohol, acetone, 
or combinations thereof [60–65]. These are either 
expensive or unwieldy for use in routine hospital 
pathology; moreover, they produce their own 
peculiar alterations in epitope preservation and 
are not necessarily any “kinder” to certain target 
proteins than formalin.

All of these considerations may seem arcane 
in regard to the standardization of immunohistol-
ogy. However, they are, in fact, key preanalytical 
and intra-analytical elements that affect the latter 
process. It is not possible to obtain perfect con-
trol of the concentrations and pH of fixatives and 
buffers, the duration of fixation, the dimensions 
of tissue blocks and histologic sections used for 
IHC, the biological activities of various prote-
olytic enzymes, and the nature of heat distribu-
tion during HIER procedures. We do not mean to 
say that pathologists must not try to accomplish 
that task, but a more realistic goal is to aim for an 
end result of consistent and functionally binary 
(positive or negative) results in DIHC. Undeniably, 
an element of artificiality accompanies that 
approach, because one externally controls the 
ranges of reactivity in any immunostaining pro-
cedure through the subjective process of antibody 

Fig. 16.10 (a) Immunostaining of a paraffin section for 
PAX2, a nuclear marker, in renal cell carcinoma with no 
epitope retrieval. (b) Heat-induced antigen retrieval with 
citrate buffer allows for antibody recognition of the target
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titration against target tissues and, by extension, 
specific target diagnoses. Nevertheless, as long 
as technical parameters are maintained within 
narrow confines, even an artificial system can be 
effectively used diagnostically. The Canadian 
Association of Pathologists has recently pub-
lished a set of guidelines that are useful in this 
specific context [66]. They also include a discus-
sion of proper “positive” and “negative” controls 
in DIHC, as well as a consideration of cross-val-
idating techniques (see http://ajcp.ascpjournals.
org/content/133/3/354.full). Furthermore, a series 
of other papers, written over a 20-year period, 
has also outlined methods for QA in diagnostic 
immunohistology [67–73].

Specific Methods for Quality Control  
in DIHC

“Validation” and “verification” are terms that are 
often used in reference to DIHC. In a pure sense, 
the first of them – validation – refers to the pro-
cess of testing putatively reactive and nonreac-
tive tissues for the target antigen, to document the 
absence of false-positive and false-negative 
results. The second, verification, relates to proper 
performance of an immunohistochemical assay 
in a specific setting – e.g., in paraffin sections as 
opposed to frozen tissue [66].

There are alternative meanings to one of these 
two terms that are also appropriate. Chronological 
validation of immunostains can and should be done 
over time in any given laboratory; here, known 
positive and negative test cases are studied over and 
over to monitor the consistency of results. 
Procedural validation (or “cross”-validation) 
implies that a “positive” immunostain is confirmed 
by data generated through another testing method. 
A representative example is electron microscopic 
evidence of epithelial differentiation in the same 
tissue sample that showed immunoreactivity for 
epithelial markers. Extramural validation applies 
when tissue samples show the same immunoreac-
tivity patterns in at least two laboratories, with one 
acting as a reference [67]. All three of these proce-
dures should be a part of QA measures in any DIHC 
laboratory. If vendors or lots are changed at some 
point for a particular antibody reagent, or there is 

an alteration in procedural platforms (e.g., manual 
vs. automated staining), internal QA assessments 
should reflect those facts. It is  particularly  important 
to give an extramural reference laboratory a detailed 
description of one’s own IHC methods, so that its 
personnel can apply the same procedures to moni-
tor reproducibility of results.

Unfortunately, because these techniques take 
time, effort, and money to do regularly, many hos-
pital laboratories have abridged or ignored them. 
Nevertheless, that is a prescription for performance 
problems over time. The Canadian experience is 
relevant here. After well-publicized problems with 
intra- and inter-laboratory reproducibility for 
selected biomarkers, provincial efforts to standard-
ize laboratory practice through guidelines and 
through centralized external QA have prompted 
considerable attention to test  validation/verifica-
tion and significant improvement in lab-to-lab con-
cordance. These processes, now being centralized 
under a Canadian Association of Pathologists ini-
tiative called cIQc (www.ciqc.ca), have the poten-
tial to provide realtime feedback to participating 
laboratories regarding best practices in tissue prep-
aration, methodology (and method platforms), 
controls, reagent selection, and interpretation. 
Similar programs exist in the UK as well, and per-
haps the most robust external QA program avail-
able to pathology labs worldwide is NordiQC 
(www.nordiqc.org). By contrast, centralized exter-
nal QC in the United States has its only meaningful 
expression in College of American Pathologists 
IHC surveys, and despite well over a decade of 
experience, this program provides little meaningful 
feedback to participating labs. More recent atten-
tion on test validation has prompted the develop-
ment of recommended guidelines for performance 
of selected biomarkers (*Her2/neu, estrogen recep-
tor protein [ERP] and progesterone receptor pro-
tein [PRP]) and more specific guidelines for test 
validation, but these guidelines lack a clear evi-
dence-based argument for many of the core recom-
mendations. Perhaps the requirement of initial and 
ongoing test validation for these biomarkers will 
focus laboratory attention on the value of external 
and internal QA, but at the time of this writing, it is 
likely that fewer than half of American laboratories 
have meaningful validation procedures in place for 
most immunohistochemical tests.
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Published Literature on DIHC: How 
Should It Be Used?

Medical publications concerning IHC span at 
least 40 years, with many variations in technique 
as well as results. Even today, some readers of 
the literature miss the fact that differences in 
reagents and protocols will have potentially strik-
ing influences on the final staining “product.” 
This is due, in part, to a lack of complete method-
ologic information in some reports, making 
selected elements of the published literature 
unreproducible. Recent consensus work on IHC, 
fluorescent in situ hybridization, and other tech-
niques may help mitigate this shortcoming.

Even so, in our current working environment, 
if one wishes to achieve a reliable, workable 
structure of diagnostic immunohistology in any 
given laboratory, one of two requirements must 
be met. The first, and the most onerous, demands 
that extensive “catalog” testing be done with 
each antibody one wishes to use, probably by 
analysis of tissue “microarrays” (Fig. 16.11). 
Parenthetically, “microarray” is simply a new 

name for an old concept  introduced by Dr. Hector 
Battifora, who described the use of  “multitumor 
[‘sausage’] tissue blocks” 25 years ago [74]. In 
this approach, one records the immunoreactivity 
of each particular antibody, with a particular 
staining platform, against many examples of 
many tumor types, generating a statistical matrix 
to be used in interpretation [75–77]. The time 
and resources necessary to accomplish this task 
are daunting. Alternatively, and more expedi-
tiously, one can use the literature to see which 
reagents and procedures have been used by refer-
ence IHC laboratories that have published their 
results widely. Those reagents and procedures 
can then be replicated – exactly – with the expec-
tation that the results of the external  laboratory 
will be mirrored in one’s own experience.

The principal error that enters into this process 
is focused on attempts to compare things that are 
incomparable. If reagents or procedures are not 
the same in laboratory A as in laboratory B, their 
results will not be parallel over time [78].

Does DIHC Conform to the Principles 
of Evidence-Based Medicine?

The foregoing discussion begs a question – is 
DIHC a truly evidence-based area of pathology? 
The response is necessarily equivocal, depending 
on supporting information. If one accepts the 
premise that DIHC is best used as a binary, some-
what artificial but reproducible practical tool, the 
reply is a qualified “yes.” However, even that 
response has a major caveat, focused on the 
unswerving need to copy and control the reagents 
and procedures used by investigators with wide 
and published experiences. And, in this context, 
the literature (the evidentiary basis for DIHC) 
may unintentionally mislead those who consult 
uncensored studies, data sets, or meta-analyses of 
existing information. Indeed, without a clear 
understanding of the shortcomings of selected 
studies (aggravated by the lack of complete 
 methodologic detail noted earlier), a casual reader 
of the literature might conclude that few, if 
any, markers of putative diagnostic interest are 
 reliable. At issue is the value of the extant 

Fig. 16.11 A tissue microarray, comprising many sam-
ples of neoplastic tissue from a variety of human tumor 
types, stained with hematoxylin and eosin (top) and an 
antibody to pankeratin (bottom)
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 literature taken as a whole. It does not escape our 
attention that a dichotomous (and diagnostically 
useful) stain result, when based on reliable litera-
ture sources or external QA, will assume a more 
continuous (and less useful) expression across a 
targeted differential diagnosis when uncensored 
literature is employed. But the pathologist is not 
merely responsible for being able to access the 
most reliable evidence for a given test. As one of 
us has stated in an earlier communication:

Surgical pathologists and cytopathologists must, 
by consensus or by mandate, use only validated 
 standardized methods for DIHC, to the absolute 
exclusion of others. This statement seems simple, 
but it is far from that. Many variables, including 
the size and thickness of tissue blocks used for 
immunohistology, the nature and length of fixa-
tion, methods used for epitope ‘retrieval,’ antibody 
binding-detection technique, choice of chromoge-
nic substrate, and the use of intensifiers of immu-
noprecipitation, are all included under the rubric of 
immunohistochemical ‘method’ [71].

In referring to the flow diagram of evidence-
based medicine (EBM) devised by Friedland 

et al. [79] (Fig. 16.12), one finds additional points 
of potential departure between the fields of DIHC 
and pristine EBM. These come under the heading 
of “medical decision-making techniques,” and 
are represented by probability assessments, deci-
sion analysis, and evaluation of cost-effective-
ness. In specific reference to immunohistology, 
pathologists (and other physicians) are commonly 
oblivious to the concepts of prior diagnostic prob-
ability, posterior diagnostic probability, and like-
lihood ratios. They often obtain immunostains 
with little or no attention to how (or if) the results 
will alter their morphological diagnostic impres-
sions. Are the tests likely to be dispositive, will 
they substantially narrow the field of possibilities, 
or might they merely cause confusion? The 
answers to those questions must come from a 
combination of empirical experience and data 
obtained from the pertinent literature [80]. An 
immunostain should not be procured simply based 
on its availability, because, with a probability of 
>0, results may not conform to the “expected” 
product. An example follows.

Fig. 16.12 Organization diagram depicting the elements of evidence-based medicine, as conceptualized by Friedland 
et al. [79]
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Immunohistochemical Results: 
Relationship to Prior and Posterior 
Probability

An irregular mass was detected mammographically 
in the left breast of a 57 year old woman (Fig. 16.13). 
An excisional biopsy of the lesion demonstrated an 
infiltrative carcinoma featuring the linear growth of 
small polygonal cells with regular, round nuclei; only 
small nucleoli; and a low mitotic rate (Fig. 16.14). 
Profiles of tumor cells tended to surround preexist-
ing interlobular and  intralobular ducts. The attending 
pathologist obtained an  immunostain for E-cadherin, 
which yielded positive results (Fig. 16.15). There was 
also reactivity for estrogen and progesterone receptor 
proteins, and a lack of HER-2 gene amplification, a 
diagnosis of Nottingham grade II invasive ductal ad-
enocarcinoma was therefore made (erroneously).

The scenario just described is not rare, in our 
experience, and it illustrates problems that accom-
pany an ignorance of probability refinement. 
Essentially, all pathologists would accept the 
microscopic image of the breast tumor in the exem-
plary case as completely diagnostic for invasive 
lobular carcinoma (ILC). Thus, the prior diagnostic 
probability approximates 100%, and is not lessened 
appreciably by a single unexpected immunohis-
tochemical result. Da Silva et al. [81] have shown 
that approximately 20% of ILCs manifest aberrant 
immunoreactivity for E-cadherin; hence, that test is 
far from determinative, in and of itself. In short, an 
expert knowledge of morphology still provides 
very high prior diagnostic probabilities. Procuring 
unnecessary immunostains in that circumstance is 

more likely to produce confusion than certainty. 
This reality, in turn, feeds directly into “medical 
decision analysis.” Surgical pathologic diagnoses 
never exist in a vacuum – the attending physician 
will use such information to structure a plan of 
treatment, and pathologists’ mistakes may well 
become clinicians’ mistakes. Da Silva et al. reached 
similar conclusions, stating:

Fig. 16.13 Mammographic image of the left breast, 
showing an irregular mass density having the morpho-
logic features of a malignancy

Fig. 16.14 (a, b) Linear profiles are seen of an invasive breast carcinoma exhibiting cellular monomorphism and rela-
tively bland nuclear features. The images are diagnostic of infiltrating lobular mammary adenocarcinoma
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Positive staining for E-cadherin should not 
 preclude a diagnosis of lobular in favor of ductal 
carcinoma. Molecular evidence suggests that even 
when E-cadherin is expressed, the cadherin-catenin 
complex maybe nonfunctional. Misclassification of 
tumors may lead to mismanagement of patients in 
clinical practice… [81]

Revisionistic approaches to histopathologic 
diagnosis, based exclusively on information from 
nonmorphological adjunctive techniques, are unsci-
entific and nonbiological. In fact, they typically 
reflect a kind of circular reasoning.

Use and Abuse of DIHC for Diagnostic 
Purposes in Routine Pathology Practice

When and How Should DIHC Be Used 
During the Diagnostic Process?
Readers may consider that it is silly to discuss when 
and how to use DIHC in daily practice in 2010, but 
it is our anecdotal experience from consultations 
that there is considerable variability and confusion 
in the pathology community about which antibod-
ies should be used for certain differential diagno-
ses, how many antibodies should be tested, and 
how to interpret IHC results that do not conform to 
diagnoses that would otherwise be rendered on the 
basis of histopathologic criteria. Indeed, many 
pathologists and reference laboratories appear to 

apply DIHC using a “shotgun approach,” perhaps 
reasoning that “the more the better” and without 
full consideration of what they are planning to do 
with the results. This practice results not only in 
unnecessary costs but also in diagnostic dilemmas 
that lead to further testing, potential confusion, and/
or diagnostic errors.

It is well known that there are few if any 
entirely specific IHC results for any one diagno-
sis. In addition, the definitions of various clinico-
pathologic entities provided by WHO, Armed 
Forces Institute of Pathology (AFIP), and other 
standard textbooks and publications do not gen-
erally include various potential DHIC results as 
diagnostic criteria [82–86]. Except for hemato-
logic and lymphoproliferative disorders and 
selected other conditions, pathology publications 
generally define a variety of entities on the basis 
of clinico-pathologic criteria, describe their gross 
pathology and histopathologic features, and 
include in a subsequent section a description of 
the characteristic immunophenotype of the lesion 
and sometimes the sensitivity and specificity of 
various antibodies [87, 88]. These descriptions 
do not generally provide specific information 
regarding when and how to use selected antibod-
ies to confirm or disprove the diagnosis of the 
entity being described. This practice raises the 
question of how best to use immunophenotypic 
information obtained by testing antibodies that 
are usually less than 100% specific for the diag-
nosis of entities that have been previously defined 
on the basis of clinical features, gross pathology, 
and H&E histopathology. In particular, in which 
cases should the DHIC test results override the 
diagnostic impressions collected from the clini-
cal findings, gross pathology, and H&E histopa-
thology? In daily practice, it is often comforting 
to observe that the immunophenotype of a lesion 
conforms with the description provided in the lit-
erature, “confirming the diagnosis,” but it can be 
equally discomforting to render a particular diag-
nosis in the presence of negative results after the 
tests have been performed. In these instances, 
practicing pathologists are expected to interpret 
the puzzling DIHC results based solely on their 
“clinical judgment,” a paradigm that has been 
somewhat discredited in the Evidence-Based 
Medicine literature [89, 90].

Fig. 16.15 Aberrant immunoreactivity in lobular breast 
carcinoma for E-cadherin. The latter marker is by no 
means determinative of ductal differentiation in breast 
cancers, as supposed by some observers
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For example, one of us (AM) recently con-
sulted two separate internationally respected 
experts regarding the diagnosis of a spindle cell 
lung neoplasm that had histomorphologic features 
of solitary fibrous tumor (SFT) but exhibited neg-
ative tumor cell immunoreactivity for CD34, in 
the presence of positive immunoreactivity for that 
antibody in tumor blood vessels. One of the 
experts opined that the tumor was indeed an SFT 
while the other did not. Who rendered the correct 
diagnosis? Should we continue using the CD34 
test during the diagnostic process of a presumed 
SFT if we are not certain about how to interpret 
negative DIHC results? In our view, if more 
detailed information regarding how to interpret 
CD34 immunoreactivity during the diagnostic 
process of an SFT were explicitly addressed in 
pathology textbooks and other publications, either 
as formal recommendations or as a definitional 
criteria, the need to worry about the diagnosis of 
this case and/or generate a consultation at addi-
tional cost to the patient would be obviated.

Another example from AM’s consultation 
practice illustrates some of the problems gener-
ated by the use of unnecessary DIHC tests. 
A pneumonectomy specimen showed two nod-
ules of carcinoid tumor involving the lung and N2 
mediastinal lymph nodes. The consult materials 
included 15 different immunostains, including 
neuroendocrine markers, CK7, CK20 and TTF-1, 
and others. DIHC for Ki-67, an immunostain that 
is being routinely used for the evaluation of neu-
roendocrine neoplasms in our laboratory was not 
performed. The tumor cells exhibited cytoplas-
mic immunoreactivity for chromogranin, synap-
tophysin, CK7, and CK20 but only weak and 
patchy nuclear immunoreactivity for TTF-1. Does 
this patient have a metastatic carcinoid tumor 
from the gastrointestinal (GI) tract or a primary 
pulmonary carcinoid tumor? Literature review 
showed a few studies of a small number of carci-
noid tumors arising in the lung and GI tract [91]. 
Primary pulmonary carcinoid tumors were uni-
formly negative for CK20 and positive for CK7 
while most GI primaries exhibited cytoplasmic 
immunoreactivity for CK20 and variable CK7 
immunoreactivity. Is this enough evidence to 
diagnose the case as a metastatic carcinoid tumor 
to the lung from a primary GI lesion? If neither 

the original pathologist nor the  consultant is 
 certain about how to interpret the information 
provided by the CK7 and CK20 tests, what is 
their diagnostic value or clinical applicability?

Further questions can be asked regarding the 
use of Ki-67 IHC for the work-up of pulmonary 
neuroendocrine neoplasms. Should we really per-
form this test routinely, as we currently do at 
Cedars-Sinai Medical Center based on requests 
from our oncologists? In reality, the WHO diag-
nostic criteria for pulmonary neuroendocrine neo-
plasms do not include the use of the Ki-67 test, 
and there are no widely accepted guidelines in the 
literature about what specific cut-off values should 
be used to distinguish typical from atypical pul-
monary carcinoid tumors and these tumors from 
high-grade neuroendocrine carcinomas [92, 93]. 
We are being asked to perform and provide an 
interpretation of the relevance of the percentage of 
nuclear Ki-67 immunoreactivity in the tumor cells 
based on our overall pathologic impression about 
a pulmonary neuroendocrine tumor. The Ki-67 
DIHC test is being used for the evaluation of GI 
neuroendocrine tumors and cut-off ranges of <2, 
2–20, and >20% have been proposed by the 
American Joint Commission on Cancer for the 
distinction between low-grade, intermediate-
grade, and high-grade lesions, based on very lim-
ited available data [94].

Review of the various principles of Evidence-
Based Pathology discussed in this volume and some 
of the problems illustrated in this chapter strongly 
suggests that there is a need for more specific guide-
lines for the use of DIHC in daily practice that will 
explicitly describe which antibodies should be used 
to render particular diagnoses and how to interpret 
respective positive and negative results.

Should DIHC Be Used to Distinguish 
Benign from Malignant Lesions?

Certain DIHC tests are useful to help distinguish 
benign from malignant lesions, such as the expres-
sion of racemase in prostate biopsies that exhibit 
atypical epithelial lesions or of myoepithelial 
markers in breast biopsies with sclerosing adenosis 
[95, 96]. However, as certain immunophenotypes 
are more frequently expressed than others in 
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selected benign or malignant lesions, pathologists 
can be tempted to use a variety of antibodies that 
have been described for other purposes to help 
diagnose malignant lesions. For example, AM 
periodically receives lung biopsies that have been 
tested for p53 to help distinguish benign reactive 
atypical pneumocytes from bronchioloalveolar 
carcinoma of the lung (BAC) or reactive mesothe-
lial hyperplasia from malignant mesothelioma. 
Although p53 immunoreactivity has been described 
in BAC, malignant mesothelioma, and some pre-
sumably premalignant conditions, these descrip-
tive observations were probably not intended as a 
diagnostic test of malignancy, and have not been 
prospectively validated for this purpose [97, 98]. 
Indeed, when we receive these cases, we often 
wonder why we were consulted if p53 was positive 
after being ordered by a pathologist who presum-
ably believes in its diagnostic value. Internationally 
renowned experts can also disagree on when and 
how to use DHIC to help distinguish benign from 
malignant lesions. For example, AM periodically 
submits in consultation difficult thyroid lesions 
that could represent an encapsulated papillary car-
cinoma, follicular variant, or a follicular adenoma 
with some cells exhibiting nuclear folds or equivo-
cal chromatin clearing. Some experts appear to 
favor the use of HMBE1 and CK19 testing for this 
differential diagnosis while others rely solely on 
the interpretation of the cytologic features of the 
lesion [99]. To our knowledge, there is limited 
information regarding the clinical validity of using 
DHIC in this differential diagnosis and no accepted 
gold standard to validate the results.

Which Antibodies Should Be Used  
for a Particular Differential Diagnosis? 
Use of Positive Likelihood Ratios  
to Help Select the Most Cost-Effective 
Components of an Antibody Panel

Evidence-Based Medicine and EBP principles 
favor the use of a systematic probabilistic approach 
for the interpretation of information and the selec-
tion of antibody panels and other tasks that aid in 
diagnosis, as discussed in more detail in Chaps. 4 
and 13. In anatomic pathology, the general 
approach involves identification of the particular 

group of diagnoses that need to be sorted out in a 
particular specimen, evaluation of the relative pre-
test probabilities of various diagnoses based on the 
incidence of the various entities being considered, 
query for the presence of selected pathological 
features that can identify the most likely diagno-
ses, identification of the “best” antibodies based 
on the +likelihood ratio (+LR) of each test, and 
selection of the smallest panel of DHIC or other 
tests that can help sort out the “final” differential 
diagnosis using probability ratios (PR) or odds 
ratios (OR). Table 16.1 shows a series of questions 
that can guide pathologists in their use of DHIC 
using this systematic probabilistic approach.

Different sets of statistics are available, but 
+LR probably provides the most useful statistical 
tool to help identify the most effective antibody 
for a particular diagnosis, as they incorporate 
information regarding the prevalence of various 
diagnoses and information regarding the effec-
tiveness of a test as illustrated by its true-positive, 
true-negative, false-positive, and false-negative 
results. They can be calculated using the formula 
+LR = sensitivity/1 − specificity.

Table 16.1 Questions that can help pathologists navi-
gate the process of evaluating specimens with diagnostic 
 immunohistochemistry using a systematic probabilistic 
approach

What is my differential diagnosis?
Which are the most likely clinico-pathological entities in 
the differential diagnoses, based on their prevalence in 
my patient population (pretest probabilities of various 
diagnoses)?
Which are the gross pathology features or imaging 
findings, if available, that can help me narrow the 
differential diagnosis?
What is my postgross pathology/radiology test differential 
diagnosis?
Which are the histopathological features that can help me 
narrow the previous differential diagnosis?
What is my posthistology test differential diagnosis?
Which are the most effective antibodies to help me work 
out the previous differential diagnosis, by their +likeli-
hood ratios (+LR)?
Which panel of antibodies with best available +LR that 
would give the best probability ratios (PR) or odds ratios 
(OR) of rendering a final diagnosis?
What is my final diagnosis after consideration of all the 
available information?
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A recent study by Westfall et al. used this gen-
eral methodology to develop evidence-based 
guidelines to optimize the selection of antibody 
panels in pleural cytology specimens with malig-
nant epithelioid cells [100]. The study evaluated 
retrospectively the use of DHIC in 153 consecu-
tive pleural effusions diagnosed at Cedars-Sinai 
Medical Center. Cases were randomly divided 
into training and test cases as explained in Chaps. 
10 and 11. The prevalence of different malignan-
cies in the training set was identified; the most 
frequent diagnoses were carcinomas of the lung, 
breast, Mullerian tract, stomach, and colon. 
Thereafter, the percentage of cases that were posi-
tive for various antibodies, by diagnosis, was 
identified. These data were used to calculate the 
sensitivity and specificity of each DHIC result 
and their +LR. The clinical usefulness of each 
antibody was then stratified according to each 
+LR, as the most sensitive and specific test DHIC 
result provides the highest ratios. On the basis of 
these data, antibody panels for the study of pleural 
effusions in male (calretinin, TTF-1, and CDX-2) 
and female (TTF-1, ER, and CA125) patients 
were selected. The diagnostic value of these pan-
els was then tested using the test set of cases and 
showed that they provided 100% specificity, and 
77% and 50% sensitivity for male and female 
patients, respectively. The study also showed that 
the use of additional antibodies such as CK5/6, 
CK7, Ber-EP4, CK20, and many others did not 
improve the results obtained with the panels.

How Many Antibodies Should Be Used 
for a Particular Differential Diagnosis? 
Use of Probability Ratios and Odds 
Ratios to Help Select the Optimal 
Number of Antibodies that Should 
Be Incorporated in an Antibody Panel

Probability theory can also be used to help identify 
how many antibodies should be incorporated in an 
antibody panel to provide the most cost-effective 
results. Different statistical tools are available, but 
PR and OR probably provide the simplest and 
most effective tools for this task. For example, if 
TTF-1 is positive in 85% of pulmonary adenocar-
cinomas, the probability of a positive finding is 

0.85 and the probability of a negative finding is 
0.15. The PR is 0.85/0.15 = 5.7. These data can 
also be transformed into odds and OR using the 
formulas odds = probability/1 − probability and 
OR = Odd1/Odd2 resulting in values of 5.7, 0.17, 
and 33.5, respectively. Probabilities of multiple 
tests can be combined by multiplication, and the 
PR and OR of various panels can be calculated.

Marchevsky and Wick used this approach for 
evaluation of the use of DHIC for the differential 
diagnosis between pulmonary adenocarcinoma 
and malignant mesothelioma, using data from a 
systematic literature review [101]. The results 
clearly showed that the OR of a mesothelioma 
diagnosis rendered by using only one antibody 
were superior to those obtained by using antibody 
panels composed with as many as 15 antibodies, 
disproving in this situation the theory that “the 
more the better.” Indeed, although a pathologist 
may intuitively think that the larger the number 
of IHC tested, the more comprehensive and pre-
cise the evaluation of a lesion, in reality each test 
is associated with a certain number of false-positive 
and negative results that in aggregate progres-
sively decrease the accuracy of the diagnosis as 
more antibodies are tested. For example, the OR 
provided by 1 antibody, 2 antibodies (MOC-31 
and TTF-1), and 15 antibodies for the diagnosis 
of epithelioid malignant mesothelioma were 
80.35, 198.18, and 9.46, respectively. The study 
did not advocate using only one or two antibodies 
for the diagnosis of malignant mesothelioma, but 
suggested that OR information should be consid-
ered during the selection of sensible and cost-
effective antibody panels.

Prognostic-Predictive 
Immunohistology and EBM

At this point in our discussion, we now come to a 
“parting of the ways” from diagnostic immunohis-
tology, and will, hereafter, consider the related but 
quite dissimilar discipline of  prognostic- predictive 
immunohistochemistry (PPIHC). Some, but not 
all, of the information presented hereafter is com-
parable to material in the chapter of this book that 
is specifically directed at prognostication and 
prediction.
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DIHC and PPIHC differ in important ways. 
The sole purpose and chief clinical application of 
DIHC are the production of reproducible cate-
gorical data, based on groups of binary test 
results. By contrast, PPIHC concerns an attempt 
to generate semiquantitative data that often are 
substituted for information from molecular stud-
ies, and which are used in an attempt to forecast 
overall case-outcomes and responses to specific 
therapies [102].

“Windows” of Immunoreactivity

As mentioned earlier, an integral part of antibody 
testing in DIHC is the setting of arbitrary but defin-
able ranges for the detectability of target antigens 
in tissue. That goal is accomplished by studying a 
group of related specimens, e.g., prostatic adeno-
carcinomas with low, medium, and high Gleason 
scores, labeled with an antibody to prostate-
specific antigen, which approximate, as closely as 
possible, samples with fixation characteristics like 
those which will be studied in one’s own labora-
tory prospectively. An antibody titer is chosen that 
will recognize antigen densities within a “window” 
defined by the lowest grade tumor on one hand and 
the highest grade tumor on the other. At the same 
time, attention must be paid to unwanted, nonspe-
cific “background” labeling (as well as unexpected 
“true” expression in diagnostically confounding 
cell types or patterns), with the aim of minimizing 
it. The process just described reflects a kind of 
contrivance or artifice, but it is needed in order to 
include the desired diagnosis and exclude others. 
This is a relatively straightforward procedure, and 
establishes a platform for binary interpretations of 
“positive” and “negative.”

The situation pertaining to PPIHC is different, 
because that technique aims to detect intracellular 
protein concentrations over a complete continuum 
starting at zero and ending at infinity. In other 
words, it is not sufficient to determine categorically 
whether a target protein is present or not; instead, 
one must provide a semiquantitative or quantitative 
estimation of its density in PPIHC, instead of 
working within a predetermined “window” [103]. 

Moreover, a scientific leap of faith is attached; it is 
usually assumed in PPIHC that the antibody spe-
cifically recognizes the target antigen (and only 
this target) and that cellular protein concentrations 
are a direct, linear reflection of gene transcription 
and translation (including gene amplification), or, 
alternatively, a sign of crucial gene mutation [104–
107]. These paradigms are often incorrect, because 
they tend to oversimplify the molecular pathways 
in which the genes of interest participate 
(Figs. 16.16 and 16.17).

The notion of quantitative IHC has been 
extant for many years, as a holy grail that is 
intended to provide a substitute for actual molec-
ular assessments [103, 108–112]. This quest has 
persisted because IHC is relatively “easy” to per-
form vis-à-vis the demands of nucleic acid blot-
ting techniques, polymerase chain reaction-based 
assays, and gene sequencing. PPIHC is also 
much less expensive and much more available to 
hospital practitioners. Nonetheless, there are two 
principal reasons that it fails in its ultimate mis-
sion, the prognostication and prediction of dis-
ease progress. The first reason is that variations 
in tissue fixation and processing, immunohisto-
logical technique, and ultimate visual interpreta-
tion may easily shift the result from one place 
to  nother on a continuous scale [103]. That is 
not nearly so true in the “windowed”  environment 
of DIHC.

Intralaboratory efforts at controlling preana-
lytic variables may enjoy a certain level of success 
in PPIHC; nevertheless, when samples are traded 
between laboratories (as in protocol studies of var-
ious therapies, or patient referrals from one hospi-
tal to another), distinct differences in results are 
often seen. Second, one must consider the concept 
of “dynamic range” (DR) in evaluating PPIHC 
preparations, as well summarized by Rimm [102].

Dynamic Range: A Physical Concept 
with Relevance to PPIHC

DR is a concept from the discipline of physics. It 
is defined as the ratio between the smallest and 
largest possible values of a changeable quantity 
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Fig. 16.16 (a) Glioblastoma multiforme of the frontal 
 cerebral cortex, immunostained (b) for putatively mutant p53 
protein. (c) Gleason score-6 prostatic adenocarcinoma, also 

immunolabeled for p53 protein (d). The complexity of the p53 
pathway is shown here, providing several other explanations 
for p53 immunostaining besides actual gene mutation (e)
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Fig. 16.17 (a) Gleason score 9 adenocarcinoma of the 
prostate, labeled for bcl-2 protein (b). Micropapillary 
adenocarcinoma of the lung (c), immunostained for bcl-2 

(d). The pertinent genetic pathway impacting bcl-2 is also 
complicated (e)
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such as sound or light [113]. DR is closely related 
to “signal-to-noise ratios,” and both are usually 
measured in a base-10 logarithmic context, using 
the term “base-doublings” (dB). This approach 
yields the following equation for signals with a 
wide DR, where SNR = signal-to-noise ratio and 
P = average signal power [30]:

 =dB log10 signal noiseSNR 10 ( / ).P P  

In DIHC, one aims to maximize the SNR
dB

, 
and the desired staining product is represented 
by a dense, dark precipitate over the target anti-
gen. In other words, almost all of the transmis-
sible light in a microscopic preparation is 
absorbed by the chromogen, leaving approxi-
mately 1% for analysis by the eye or another sen-
sor [102]. That is a good system for binary data 
generation, as in DIHC, but not for quantitative-
continuous analysis as desired in PPIHC. The 
observer is forced to parse the remaining 1% sig-
nal into even-smaller units if a scaled result is the 
goal. If attempts are made to lessen the target-
signal power, the signal of the noise assumes 
proportionately greater significance. That point 

is illustrated by Fig. 16.18, taken from the field 
of photography; the greater the signal power, the 
shorter the exposure (F-stop setting) is on a cam-
era, and the lower the noise. However, as F-stops 
increase because signal intensity drops, noise 
steadily increases as well.

The latter construct explains why one has 
 serious problems in trying to subdivide the mid-
portion of a DR plot based on 1% residual signal 
power in PPIHC. Very slight alterations in the 
system, such as increasing the antibody concen-
tration, adding a chromogen-intensifier, or sub-
stituting one chromogen for another, predictably 
change the DR results, sometimes markedly. As 
Rimm indicated:

…highly-expressing cancers may not be resolved 
from the majority of moderately-expressing can-
cers when using a high antibody concentration, 
owing to saturation of the assay. Using these types 
of observations, an investigator [A] might resolve 
only the low expressors… The reverse could be the 
case for an investigator [B] who uses a very low 
concentration of antibody [102].

The end result of those dichotomous outcomes 
is that observer A would likely group mid-range 

Fig. 16.18 This plot of photographic dynamic range (DR) 
shows that as exposure (f-stop) times increase, noise also 
increases and DR (low-medium-medium/high-high) decreases. 

In immunohistochemistry, a parallel paradigm obtains – the 
lower the quantity of light transmitted through an absorbing 
moiety (an immunostained slide), the lower the DR
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cases with “high” expressors, and observer B 
would place them among “low” expressors. In 
turn, these mishaps could lead the two observers 
to conclude contradictorily that both low and 
high immunoexpression of the same analyte in 
PPIHC are prognostically associated with the 
same (good or bad) outcome. As stressed earlier, 
any other factor that affects final immunostaining 
intensity could potentially change the DR of the 
technique as well. Some examples are out-of-
range pH in a given lot of formalin fixative, inap-
propriate fixation, inadequate epitope retrieval, or 
inconsistency of immunodetection methodology 
over time. This is likely also relevant to the appar-
ent dichotomization of ERP and PRP by the use 
of altered tissue preservation techniques, or max-
imally sensitivity methodology.

Examples of Failure in Attempts  
at Quantitative PPIHC

A truism in biomedical technology is that when 
one substitutes a vicarious technique for first-
hand evaluation of any particular analyte, errors 
will result. Looking at the “genuine article” 
directly is always the best course of action. 
Nonetheless, that statement is idealistic. Proper 
assessment of biochemical moieties is often 
tedious, technically demanding, and expensive, 
and it may well require special processing of tis-
sue or fluid samples that will serve as substrates. 
By contrast, even though they have all been edu-
cated in science, physicians often seek the quick-
est, cheapest, and easiest way to a test result. 
Indeed, that is the most direct explanation for the 
current state of affairs in regard to PPIHC.

Typically, soon after a mechanistic link is dis-
covered between a particular gene and a salient 
intracellular process – especially in reference to 
malignant diseases – attempts are made to inte-
grate the observation into clinical practice. No 
matter whether the gene in question is amplified, 
overexpressed, mutated, or deleted, methods 
quickly evolve to evaluate its status in human tis-
sue. Obviously, based on the foregoing comments, 
the best mode of analysis would be a direct one; 
i.e., first-hand assessment of the integrity of the 

gene itself with procedures such as Southern 
 blotting, polymerase chain reaction-based assays, 
in situ hybridization, and nucleotide sequencing 
[114–116]. Nonetheless, because those methods 
are demanding ones in comparison with PPIHC, 
the “default” position often has been to utilize a 
“quantitative” immunohistochemical substitute, 
whenever possible, for the technical “real McCoy.” 
This problem, of course, would be lessened if 
laboratories carefully validated the PPIHC method 
against the clinically validated marker analysis 
method. A prescription for success in this regard 
was proposed by McGuire in 1991 [117].

Moreover, a great deal of scientific naïvete has 
tainted such undertakings. Simply because a poly-
peptide gene product is detectable immunohisto-
logically, many observers are ready to leap to the 
conclusion that biological inhibitors of the protein 
will have an inevitable effect on its role in the cell. 
Principal examples of that flawed line of reason-
ing include PPIHC testing for epidermal growth 
factor receptor (EGFR), HER-2, and c-kit (CD117) 
in human neoplasms [118–120]. Prospective 
attention to the principles of EBM would likely 
have obviated such problems. Other, slightly less 
troublesome analytes in PPIHC are the ERPs and 
PRPs in breast carcinoma.

Difficulties with the clinical evaluation of 
HER-2 status in human tumors have been dis-
cussed in Chap. 5 and are not recounted here. We 
will subsequently examine the other topics cited 
previously in more detail.

EGFR
EGFR is a member (along with HER-2) of the 
ErbB gene family, a group of transmembrane 
proteins that function as tyrosine kinase recep-
tors and are activated by several extracellular 
ligands [121]. In the late 1990s, biological agents 
that showed the ability to block the binding of 
EGFR to its ligands were introduced, and several 
such humanized anti-EGFR antibodies now are 
available. These include cetuximab, panitu-
mumab, erlotinib, and gefitinib [122, 123]. 
EGFR is immunodetectable on the cell surfaces 
of several tumors, but those of clinical interest 
mainly include squamous cell carcinomas of the 
head and neck; adenocarcinomas of the lung 
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(Fig. 16.19); and colorectal adenocarcinomas 
[122] (Fig. 16.20).

Early treatment protocols with EGFR inhibi-
tors required that PPIHC procedures show the 
presence of EGFR protein in neoplastic cells, in 
order for patients to be eligible for therapy. 
Biomedical companies with laboratory-medicine 
arms were quick to respond, marketing EGFR 
immunostaining “kits” that were approved for 
use by the U.S. Food and Drug Administration. 
However, the antibody reagents in those kits 
were questionably specific. For example, essen-
tially all colorectal carcinomas were labeled with 
one commercial kit, making IHC testing super-
fluous [124]. In addition, comparisons with other 
(nonkit-based) anti-EGFR antibodies often pro-
duced strikingly dissimilar immunohistochemi-
cal results in the same tumors [125, 126].

After years of data accrual and analysis, virtually 
all recent publications have concluded that the 
immunohistologic EGFR status of human neo-
plasms has no predictive value for their possible 
therapeutic response to biological inhibitors [120, 
124, 127–129]. It now appears that the dispositive 
piece of information in that regard is the presence or 
absence of selected EGFR gene mutations [129], 
particularly in lung adenocarcinoma, or the con-
comitant activating mutation of downstream ele-
ments, such as K-ras mutations in colorectal 
carcinoma. Indeed, in the latter setting, K-ras muta-
tion is an independent predictive marker of kinase 
inhibitor therapy in metastatic colon carcinoma. 
Neither EGFR/K-ras mutation nor treatment 
response appears to have any meaningful relation-
ship to immunoreactivity for EGFR protein.

Fig. 16.19 (a) Adenocarcinoma of the lung, immunos-
tained for epidermal growth factor receptor protein (b)

Fig. 16.20 (a) Adenocarcinoma of the colon, immunos-
tained for epidermal growth factor receptor protein (b)
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CD117
CD117 (c-kit protein; “Steele factor”; “stem cell 
factor”) is another cell membrane-based tyrosine 
kinase with a similar function to that of ErbB 
proteins. In the late 1990s, studies on gastrointes-
tinal stromal tumors (GISTs) showed that the vast 
majority of them were immunoreactive for 
CD117 [130–132] (Fig. 16.21), and it became a 
virtual conditio sine qua non for that neoplasm. 
In keeping with the theme described above, the 
assumption was made that all CD117-positive 
tumors should, and would, respond to inhibitors 
of c-kit binding to its activating ligands. The prin-
cipal biological agent in this category, imatinib, 
did prove to be spectacularly effective in treating 
metastatic GIST, as well as chronic myelogenous 
leukemia (CML) [133]. In the latter of those con-
ditions, an activation of the abl gene (another 
tyrosine kinase protein) occurs because of a bcr-
abl gene fusion relating to the t(9;22) chromo-
somal translocation in CML [134].

Once again, misdirected hopes of therapeutic 
success with imatinib arose in reference to all 
tumors that were immunoreactive for CD117. 
They comprised a considerable group, including 
primitive neuroectodermal tumor, extraskeletal 
myxoid chondrosarcoma, melanotic schwan-
noma, melanoma, angiosarcoma, uterine leiomy-

osarcoma, seminoma-dysgerminoma, mast cell 
proliferations, adenoid cystic carcinoma, some 
nasopharyngeal carcinomas, chromophobe renal 
cell carcinomas, high-grade neuroendocrine car-
cinomas, epithelial-myoepithelial salivary gland 
carcinoma, ovarian carcinomas, and some ductal 
breast carcinomas [135] (Fig. 16.22). Nonetheless, 
only GIST and CML demonstrated any meaning-
ful clinical response to imatinib-mediated inhibi-
tion of tyrosine kinase. Further analysis has 
demonstrated once more that critical, activating 
mutations in the CD117 gene (Fig. 16.23) are 
required to realize a biological response to c-kit-
inhibiting agents [136].

Hormone Receptors in Breast Carcinoma
In the 1970s, McGuire and others developed a 
chemical competitive binding assay (CCBA) for 
ERP and PRP, which was principally used in the 
evaluation of breast carcinomas [137–140]. The 
goal of that assessment was to study a possible 
relationship between quantitative ERP/PRP sta-
tus and a response to hormone-modulating drugs. 
Many studies over several years did indeed show 
such an association. Breast cancers with a quanti-
tative ERP content over a level of 10 fmol/mg 
protein were classified as “positive,” because 
they showed a uniform response to the adminis-
tration of tamoxifen, an estrogen antagonist [138, 
139]. Indeed, the statistical level of clinical ben-
efit from that agent was a linear one; the higher 
the ERP content of the tumor cells, the greater the 
effect was of tamoxifen [141].

Problems with the use of CCBAs for ERP and 
PRP centered on the need for a critical volume of 
fresh tumor tissue to perform the tests. 
Accordingly, other investigators began to evalu-
ate tissue section-based immunoassays as alter-
natives, in the 1980s. These involved both 
immunofluorescence and immunoenzyme tech-
niques, as applied to frozen sections of breast 
cancers [142]. Good – but not perfect – correla-
tion was observed between results in CCBAs and 
immunohistologic methods [143, 144]. The abil-
ity to study very small biopsies with IHC was 
regarded as a substantial benefit, and the use of 
chemical competitive assays began to disappear. 
By the advent of the twenty-first century, they 

Fig. 16.21 Intense immunoreactivity is present in a gastro-
intestinal stromal tumor, labeled for CD117 (c-kit protein)
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were all but extinct, and advances in HIER had 
made studies of paraffin sections for ERP and 
PRP routine [145] (Fig. 16.24).

Nevertheless, potentially valuable data were 
lost in this transition. Recent evaluations have 
shown a bimodal distribution [145, 146] of ERP 
in mammary carcinomas that was not present in 
the CCBA era, where a linear model obtained 
[139, 141]. As suggested earlier, this bimodality 
is almost certainly an artifact of technique and 
the limitations of PPIHC in delineating mid-
range biochemical results, particularly when 

increasingly sensitive techniques are employed. 
Accordingly, there may be no way of knowing 
how close an immunohistologically “positive” 
ERP result is to the previous 10 fmol/mg thresh-
old in CCBAs in many laboratories today.

This need not necessarily be the case, however. 
In their initial validation of estrogen receptor 
PPHIC, Harvey and associates (147) analyzed 
several anti-ER antibodies, including 6F11, and 
compared their immunohistochemical results with 
both existing validated CCBA data and survival in 
over 1,000 patients. Using a modified H-scoring 

Fig. 16.22 CD117 immunoreactivity is present in (a) 
testicular seminoma; (b) mastocytosis of the bone mar-
row; (c) small-cell neuroendocrine carcinoma of the lung; 

and (d) metastatic melanoma. Despite their immunolabel-
ing, none of these tumors responds to targeted anti-CD117 
biological therapy
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system we now know as the Allred score, a rela-
tionship approximating linearity between overall 
stain score and outcome, as well as Allred score 
and CCBA values, was demonstrated. It is also 

important to note that the distribution of scores 
was not dichotomous, but more evenly distributed 
over all stain outcome possibilities, with a distinct 
cut-point (Allred score 3) between clinical 

Fig. 16.23 Activating mutations in the CD117 gene, cor-
responding to PCR products marked by arrows in this blot 
preparation, are necessary in order for patients with 

CD117-immunoreactive tumors to realize beneficial 
effects from anti-tyrosine kinase medications

Fig. 16.24 Immunostaining for estrogen receptor protein 
(a) and progesterone receptor protein (b) in ductal breast 
carcinomas. These analytes show a bimodal distribution 

in paraffin sections that is likely an artifact of immunohis-
tochemical detection
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responders and nonresponders. It might be argued 
that the Allred score (by measuring tissue distri-
bution and stain intensity) is merely a best-fit solu-
tion to the problem of correlation with CCBA data 
and survival, rather than a direct measure of true 
biological variation. It might also be argued that 
the apparent linearity of the assay with respect to 
CCBA and outcome was due to the use of an infe-
rior reagent in an insensitive system (antibody 
6F11 using protease/DNAse retrieval). Also, as 
Nadji has sagely observed:

…in the case of ER, immunohistochemical meth-
ods only identify a segment or epitope of ER pro-
tein that is immunologically-reactive with the used 
antibody. Hence, as it is, an immunohistochemical 
technique gives no information about the func-
tional status of the ER molecule, and/or that of the 
complex downstream ER pathways. This may be 
one of the reasons why one-third of patients with 
ER-positive breast cancers initially, and another 
one-third eventually, do not respond to endocrine 
treatment modalities [148].

Those comments also raise an important 
 secondary topic in this context. Puristically, one 
should only use cross-validated, ERP-positive 
breast cancer specimens from patients who were 
proven to benefit from endocrine therapy, as 
biological controls in clinical PPIHC. That pro-
vision is virtually never heeded today by most 
laboratories, but clearly was by others [117, 
147, 149].

Ideally, one should employ antibody reagents 
whose binding to tissue targets is known to cor-
relate with in vivo activity of the substrate. With 
regard to breast cancer, the active isoform of 
ERP appears to be phosphorylated ERP-alpha 
(PERPA), which reflects the presence of an intact 
intracellular signaling pathway [150, 151]. 
Nevertheless, the great majority of laboratories 
doing PPIHC for ERP do not utilize anti-PERPA 
antibodies.

Whereas an increasing number of ERP anti-
bodies have entered the commercial market, and 
some of them show suboptimal specificity for 
functional ERP epitopes [149], attention to appro-
priate clinical validation using tenets proposed by 
McGuire may provide a basis for reproducible 
and meaningful PPIHC and address, at least, some 
of Nadji’s concerns [148]. Practically speaking, 

without careful and appropriate validation, the 
true relationship between antibody specificity for 
functional ERP epitopes and treatment failure 
alluded to by Nadji cannot be understood.

Alternatives to Immunohistology  
for Prognostication and Prediction

In light of the deficiencies and distortions attached 
to PPIHC as a reflection of actual tumor-related 
“biopredictor” distributions, other  methods have 
been evaluated as alternatives to traditional 
paraffin- section immunohistology. Four of them – 
the automated quantitative analysis (AQUA) sys-
tem, polymerase chain reaction (PCR)-based 
assays, fluorescent and chromogenic in situ hybrid-
ization (FISH), and gene-chip arrays – show par-
ticular utility.

The AQUA Technique

Developed at Yale University, the AQUA method 
is, in a way, a return to a technique of the past, 
but with new dimensions [152–154]. This proce-
dure uses immunofluorescence as its principal 
antigen-detection system with paraffin sections, 
and can vary antibody concentrations over a pre-
defined range in the study of each test sample. 
Fluorescent emission data are recorded by image 
acquisition and software-mediated analysis, and 
matched to a subcellular compartment of interest 
(e.g., nucleus, cytoplasm, cell membrane, etc.) 
[152]. Results of the AQUA technique parallel 
those of enzyme-linked immunosorbent assays 
(ELISAs) in clinical chemistry, and are much 
better than traditional IHC at portraying linear 
biomarker activities over a continuous range of 
values [102].

Recent publications on AQUA by the Yale 
group of investigators have shown that ERP den-
sity in breast cancer does indeed maintain a lin-
ear association with the biological response to 
tamoxifen, just as it did in the past [152, 154]. 
Interestingly, they also demonstrate that both 
low and high levels of HER-2 protein in breast 
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carcinomas are linked with adverse clinical 
behavior. p53 protein had neither of those char-
acteristics [152].

Polymerase Chain Reaction-Based 
Analyses

PCR-based analyses, which have been avail-
able for over 15 years, have two potential uses 
in the setting being discussed. First, if it is 
known that one or more particular mutations in 
a specified gene have a prognostic significance, 
they can be relatively easily demonstrated by 
conventional PCR or “real-time” PCR (RT-PCR) 
[155]. In the latter case, the presence of the tar-
get nucleic acid sequence(s) is “reported” as it is 

detected [156]. Examples of prognostic analytes 
that can be  studied in this way are represented 
by p53 mutations and activating mutations in 
the EGFR and CD117 genes [157]. Only a small 
amount of tissue is required for PCR, and the 
study can even be done on fine needle aspira-
tion biopsies (Fig. 16.25) or effusion cytology 
specimens.

Secondly, in RT-PCR, complementary 
 deoxyribonucleic acid (cDNA) derived from the 
clinical sample is analyzed in parallel with 
“housekeeping” genes. Comparison of the two, 
and standardization of final results, allows for a 
quantitative measurement of specific patient-
related nucleic acid sequences [158]. Thus, 
potential gene amplification can be detected with 
this method [159, 160].

Fig. 16.25 Polymerase chain reaction-based assays for mutations in the p53 gene can be performed on specimens of 
limited volume, as true of this fine-needle aspiration biopsy of a nonsmall-cell lung carcinoma
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Fluorescent and Chromogenic In Situ 
Hybridization (FISH and CISH)

FISH methods for studying the number of gene 
copies or the presence of specific gene mutations 
in human cells are now widespread [161]. 
Indeed, many laboratories have foregone “surro-
gate” testing (usually with IHC) for prognostic-
predictive gene alterations and moved to 
exclusive use of in situ hybridization [162]. That 
is certainly true for HER-2 in the current prac-
tice of surgical pathology [163]. In this tech-
nique, labeled nucleic acid probes are hybridized 
with native single-stranded DNA (following a 
denaturation step) or ribonucleic acid (RNA) 

from the specimen. Detection methods depend 
on the nature of the probe label; it can be a radio-
nuclide, a heavy-metal complex, a fluorophore 
(FISH) (Fig. 16.26), or a chromogenic dye 
(CISH) [159, 161, 164] (Fig. 16.27). Once again, 
the advantage of in situ hybridization over 
PPIHC is that the former method is direct, 
whereas the latter is indirect. In situ hybridiza-
tion can be employed to assess the number of 
gene copies, the presence of mutant gene 
sequences, or the amount of intracellular mes-
senger RNA related to a particular gene.

Nucleic Acid Microarrays

Nucleic acid microarrays are “multiplex” (multi-
ple simultaneous test-capable) platforms that are 
used in the analysis of gene copies in a clinical 
sample, relative to integrated reference controls 
[165–169]. They comprise arrayed series of thou-
sands of microscopic oligonucleotide spots, 
called “features.” Each feature contains pico-
moles of specific nucleic acid sequences, known 
as probes or reporters (Fig. 16.28). Hybridized 
probe-target complexes are detected and quanti-
fied with fluorophores, heavy metals, or chemilu-
minescence labels, to assess the relative numbers 

Fig. 16.26 The cells in this ductal mammary adenocarci-
noma (a) show multiple copies of the HER-2 gene, as 
depicted by the fluorescent in situ hybridization method (b)

Fig. 16.27 The tumor shown in Fig. 16.26 also manifests 
several intranuclear signals in a chromogenic in situ 
hybridization study for HER-2
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of nucleic acid sequences in the target tissue. 
Because each array can contain >104 probes, it 
allows for many assays to be done in parallel. 
Probes are attached to a solid surface by covalent 
bonds; the solid component can be glass or a sili-
con chip [168, 169].

After hybridization with reporter probes, the 
chip is scanned with an appropriate detector 
device, and the signals are quantified. A “heat 
map” is then generated by associated computer 
software that shows which nucleic acid sequences 
are increased in number, which are unchanged, 
and which are decreased, relative to controls 
[169, 170] (Fig. 16.29). Depending on whether a 
chip comprises DNA or RNA sequences, the 
presence of either gene amplification or overex-
pression in the clinical sample can be determined 
with this technology.

Gene chips are powerful tools in prognostica-
tion and prediction because of their multiplex 
capabilities. Rather than providing information 
on only one gene or gene product, chips paint a 
broad picture of nucleic acid composition or 
expression in any given sample [171, 172].

Should PPIHC Have a Future, Based  
on EBM Principles?

This discussion has focused on the good and the 
not-so-good aspects of applied IHC. Casting 
diplomacy aside, we conclude that more of the 
latter elements exist than the former in refer-
ence to PPIHC. The principal reasons account-
ing for the persistence of “forecast”-oriented 
immunohistology seem to relate to its general 

Fig. 16.28 Gene chip structure is based on the presence 
of many predetermined oligonucleotide spots (“features”), 
with which controlled and labeled nucleic acid probes can 

be hybridized. The results present a multifaceted picture 
that can show increased, decreased, or unchanged gene 
copy numbers as compared with integrated controls
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availability and relatively low cost, and not to 
its superior performance in relation to other 
testing methods.

Ultimately, whether the healthcare system in 
the United States or other countries continues to 
use PPIHC will depend on a comprehensive anal-
ysis of its cost-effectiveness. Other specialties 
have begun to use that approach with beneficial 
results [173, 174] (Fig. 16.30). If a test is inexpen-
sive but it is mediocre, overused, and may produce 

misleading information, it logically should be 
abandoned. On the other hand, alternative assays 
that cost more, but have excellent predictive val-
ues and low rates of error, are those that best serve 
patients and the system at large. In that context, 
we believe that the future of PPIHC is, or should 
be, in doubt on evidence-based scientific grounds. 
At this stage in its evolution, medical economists 
are very likely better judges of its eventual fate 
than are pathologists or other physicians.

Fig. 16.29 A “heat map” of gene chip results, showing increased (green), unchanged (black), or decreased (red) indi-
vidual gene-related signals as compared with controls
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As our knowledge of genomics expands, medical 
practice is slowly moving toward a new era of 
genomic medicine, with promises of personal-
ized care and disease prevention based on 
genomic tools and technologies. As a result, 
molecular pathology has become fundamental to 
almost every aspect of healthcare delivery. 
Molecular pathology, a rapidly evolving discipline 
within pathology, incorporates the principles, 
techniques, and tools of molecular biology into 
diagnostic medicine in the clinical laboratory. To 
provide additional information for various clini-
cal inquiries, molecular pathology integrates and 
applies knowledge from anatomic and clinical 
pathology, molecular biology, biochemistry, pro-
teomics, and genetics. Therefore, it is strategi-
cally positioned at the interface between basic 
science and medicine.

With the completion of the human genome 
sequence and the advent of the “postgenomic 
era,” there is increasing demand to translate 
genomic knowledge into clinical testing 

 applications that have the potential to improve 
 healthcare. However, a major hurdle in this 
 process is the fact that standards for evaluating 
the clinical utility of a genetic test are not well 
developed. For the majority of emerging genetic 
tests, the goals of testing are often poorly defined 
or understood due to uncertain penetrance of 
causative mutations, prolonged time-lag between 
diagnosis and onset of symptoms, lack of knowl-
edge about the natural history of newly discov-
ered or rare disorders, and absence of effective 
therapeutic interventions. In addition, the under-
lying technologies are elaborate and constantly 
evolving. The newer whole-genome technolo-
gies produce such huge masses of data that 
interpretation of test results becomes highly 
complex and time consuming. Distinguishing 
between novel mutations and benign sequence 
variants is difficult and often highly speculative, 
depending upon a priori assumptions that may 
or may not be correct. Most importantly, the 
number and quality of studies addressing these 
issues are limited. As a result, test applications 
are being proposed and marketed based on 
descriptive evidence and pathophysiologic rea-
soning, without the appropriate data provided 
by well-designed clinical trials or observational 
studies to back them up [1].
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Structured Approaches for Test 
Evaluation: ACCE and EGAPP

To address the need for evidentiary standards in 
genomic medicine, the Centers for Disease 
Control and Prevention (CDC) sponsored the 
ACCE project (http://www.cdc.gov/genomics/
gtesting/ACCE/acce_proj.htm#T1). The ACCE 
acronym denotes the four aspects of evaluation: 
Analytic validity, Clinical validity, Clinical util-
ity, and associated Ethical, legal, and social 
implications [2, 3]. The ACCE project strives to 
establish a framework for assessing data on 
emerging genetic tests. To refine and test this 
review process for applications of genomic tech-
nology that are in transition from research to 
clinical practice, the National Office of Public 
Health Genomics (NOPHG) at the CDC launched 
the Evaluation of Genomic Applications in 
Practice and Prevention (EGAPP) initiative in 
2004. The EGAPP effort has applied the ACCE 
framework to five genetic testing applications, 
providing evidence reports for others to use in 
formulating recommendations [4–8]. The EGAPP 
initiative continues to support timely and efficient 
translation of genomic applications into clinical 
practice by developing data collection, synthesis, 
and review capacity. Since strict adherence to the 
ACCE methodology is expensive and time con-
suming, we recommend using it as a general 
guide for decision-makers to appraise the readi-
ness of a new genetic test for transition from dis-
covery into clinical practice.

Formulation of the Central Question 
that the Test Is Supposed to Answer

According to the ACCE framework, the problem 
of interest needs to be carefully defined before 
the evidentiary review process. Depending on the 
purpose of the genetic test, the problem of inter-
est may pertain to a specific medical disorder or a 
desired outcome. In the case of a medical disor-
der, it should be defined based on its clinical 
manifestations, rather than the laboratory tests 
employed for its detection. For pharmacogenomic 
testing, the clinical problem relates to the  outcome 

of interest. It may be a reduction of adverse drug 
events, treatment optimization, or identification 
of patients most likely to benefit from a specific 
drug. The next step involves the characterization 
of test properties. It may entail specifying the 
genetic variant, the assay chosen to detect this 
genetic variant, reliability of the assay,  consistency 
from laboratory to laboratory, and the complexity 
of test interpretation. Since the performance char-
acteristics of a given test may vary depending on 
the intended use of the test, it is imperative to 
delineate the clinical scenario. Aspects of the 
clinical scenario that need to be addressed include 
the clinical setting (e.g., primary or specialty 
care; presence or absence of pre- and posttest 
genetic counseling), test application (e.g., diag-
nosis or screening), and test subjects (e.g., the 
general healthy population, selected high-risk 
individuals, or patients who are already 
symptomatic).

Systematic Literature Review  
of Available Evidence

After establishing the central question that the 
test is supposed to answer, one can proceed to a 
systematic, comprehensive search for relevant 
information in the scientific literature. This 
approach is considered acceptable, and indeed 
most often imperative, since it is recognized that 
ascertainment of clinical predictive value and 
genotype-phenotype correlations for most molec-
ular tests is beyond the scope and capabilities of 
any one laboratory or center [9]. The strategy 
employed in the systematic literature review to 
identify relevant papers should be stipulated. 
Prior to the evaluation process, data sources, cri-
teria for the inclusion or exclusion of a study, and 
criteria for quality assessment of a study need to 
be established as well.

Evaluation of the Quality of Available 
Evidence: Evidence Levels

The United States Preventive Services Task 
Force’s Guide to Community Preventive Services 
has developed a sound basis for evaluating the 
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quality of relevant studies [10]. In general, stud-
ies are characterized in terms of their design and 
execution. Suitability of design depends on the 
degree to which study design characteristics 
affect the validity of the results of a study. For 
example, prospective studies with concurrent 
comparison groups such as randomized con-
trolled trials are considered of superior quality 
relative to observational studies without concur-
rent comparison groups. However, for many 
genetic tests, especially those for rare disorders, 
the prevalence of a specific genotype is so low 
that randomized trials are not feasible, and obser-
vational studies may provide better evidence. 
Assessment of study execution for a genetic test 
depends on several features: descriptions of the 
study population, sampling of the study popula-
tion, measurement of genotype(s) and associated 
phenotype(s), data analysis, interpretation of results, 
and other confounding factors. If a study fails to 
adequately address specific aspects of these char-
acteristics, it is considered a limitation.

Analytic Validity: Sensitivity,  
Specificity, Quality Control,  
and Assay Robustness

Subsequent to formulating the clinical problem 
and collecting the available best evidence from 
the literature, assessment of the four ACCE com-
ponents can begin. EGAPP defines the analytic 
validity of a genetic test as its ability to accurately 
and reliably measure the genotype of interest [2]. 
Integral elements of analytic validity include 
analytic sensitivity, analytic specificity, quality 
control, and assay robustness. Analytic sensitiv-
ity reflects the detection rate, and it is the proba-
bility that a test will be positive when a target 
DNA sequence is present. Alternatively, analytic 
sensitivity can be defined as the limit of detection 
of an assay, namely the lowest amount of target 
sequence that can be detected in a specimen with 
confidence. The likelihood that a test will be neg-
ative in the absence of a target DNA sequence 
establishes the analytic specificity. Quality con-
trol encompasses a set of procedures designed to 
ensure the appropriate performance of a method 
and the quality of the resulting data. To assess the 

precision of a method within a laboratory, quality 
control usually involves the inclusion of positive 
and negative controls, reagent blanks, and dupli-
cates in analytical runs. Proficiency testing (PT) 
is another essential component of quality assur-
ance. For example, the College of American 
Pathologists (CAP) and the American College of 
Medical Genetics (ACMG) jointly administer PT 
programs for the more widely performed genetic 
tests. These surveys provide information regard-
ing the consistency and accuracy of a specific test 
among laboratories. Finally, assay robustness 
examines magnitude of changes in test results 
secondary to small changes in preanalytic and 
analytic variables.

Since the technologies employed in molecular 
diagnostic testing are complex and constantly 
evolving, it is necessary to conduct a formal 
evaluation of analytic validity. To accomplish this 
task, a variety of data sources need to be used to 
obtain objective and reliable information. The 
best information derives from collaborative stud-
ies using a large panel of well-characterized sam-
ples (both cases and controls) that are exchanged 
between laboratories, blindly tested and reported, 
with the results independently analyzed [11]. 
Unfortunately, such optimal studies rarely exist 
for any genetic test, especially for a rare 
disease, prior to its introduction into clinical 
practice. Less optimal sources of data include 
well-designed method comparison and validation 
studies, data from PT programs, and FDA sum-
maries of test kits or reagents that have been 
reviewed and approved by that agency.

Evaluation of the Analytic Sensitivity 
and Specificity of Different  
Molecular Tests

Most genetic variants can be tested by a variety 
of protocols. For example, accumulating evi-
dence indicates that specific mutations in the 
tyrosine kinase domain of EGFR confer an 
improved response to EGFR inhibitors, such as 
gefitinib and erlotinib, in patients with non-small 
cell lung cancers [12]. The methodologies  utilized 
to detect these mutations range from traditional 
Sanger sequencing to high-resolution melting 
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analysis to allele specific real-time PCR to 
pyrosequencing. The test performance character-
istics may differ greatly depending on the instru-
ments and methodologies employed. The limit of 
detection, or analytic sensitivity, for traditional 
Sanger sequencing is approximately 20%, since 
minority nucleotide signals below that level (rel-
ative to the major nucleotide at that position) 
begin to blend in with the general background 
“noise” of the technique [13]. In practical terms, 
this translates into a limit of detection of the 
mutation of interest in a specimen no less than 
20% of tumor cells carrying the specific mutation 
in a background of wild type cells. In contrast, 
utilizing allele specific real-time PCR, the ana-
lytic sensitivity may approach 1%. However, 
there is a paucity of studies one can rely on to 
determine the degree of impact (if any) on clini-
cal outcomes caused by these differences in ana-
lytic sensitivity. Needless to say, this dearth of 
published studies on analytic validity limits the 
strength of conclusions regarding the clinical 
validity and utility of the test.

Clinical Performance Characteristics  
of Molecular Tests: Sensitivity  
and Predictive Value

The clinical validity of a genetic test establishes 
its accuracy at predicting a phenotype of interest 
or a clinical outcome. According to the ACCE 
evaluation process, clinical validity builds on 
analytic validity by examining five more ele-
ments: clinical sensitivity, clinical specificity, 
prevalence, positive and negative predictive 
values, and penetrance [2]. In contrast to ana-
lytic sensitivity, where the goal is to correctly 
identify a genotype, clinical sensitivity mea-
sures the proportion of individuals who have (or 
will develop) the disorder of interest and whose 
test results are positive; these results are consid-
ered true-positive (TP). If an individual with the 
phenotype of interest renders a negative result, 
it is considered false-negative (FN). Thus, 
 clinical sensitivity is defined as the number of 
TP results divided by the sum of the TP and 
FN results [TP/(TP + FN)]. Clinical specificity 

determines the proportion of subjects with 
 negative test values and who do not have (or will 
not develop) the phenotype; these results are 
considered true-negative (TN). If a subject lacks 
the phenotype of interest but yields a positive 
result, it is considered a false-positive (FP) 
result. Mathematically, clinical specificity is the 
quotient between the number of TN results and 
the sum of the TN and FP results [TN/(TN + FP)]. 
Prevalence refers to the number of individuals 
within the specified testing population who have 
(or will develop) the phenotype. As a result, 
prevalence can affect the positive and negative 
predictive values of a molecular test. For exam-
ple, if a given mutation is extremely rare in the 
tested population, there is a greater chance that 
a positive test result may be due to a technical 
(analytic) FP rather than a TP.

The clinical performance characteristics of a 
molecular test are intricately related to one 
another. When the test renders a clinically FN 
result, it is usually not caused by laboratory 
errors. Instead, it indicates the presence of other 
causal factors that may contribute to the develop-
ment of the interested phenotype, in addition to 
the specific mutation(s) being tested. When a 
genetic test produces a FP result, there are two 
possible explanations. The positive test result 
may be due to analytic error(s), or it may indi-
cate incomplete penetrance. For instance, a 
genetic test may correctly identify individuals 
homozygous for the C282Y mutation in the HFE 
gene; however, they may never develop serious 
clinical manifestations of iron overload in their 
lifetime, due to the low clinical penetrance of 
HFE mutations [14]. In addition to penetrance, 
another relationship between genotype and phe-
notype needs to be considered. Sometimes, dif-
ferent mutations in the same gene cause different 
phenotypic effects. In the DMD gene, one series 
of deletions cause Becker muscular dystrophy, 
while other deletions in the same gene manifest 
as Duchenne muscular dystrophy. Since this 
genotype to phenotype relationship (depending 
on whether the deletion is in-frame or out-of-
frame) is highly consistent, some clinicians use 
this information for prognostic and counseling 
purposes [15].
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Clinical Utility

Clinical utility of a genetic test refers to its ability 
to influence health outcomes through the adop-
tion of therapeutic or preventive interventions 
based on test results. Both the risks and benefits 
of a test’s introduction into clinical practice need 
to be considered. The ACCE framework has for-
mulated a series of questions, namely questions 
26 through 41, to facilitate the organization of 
information regarding clinical utility [2]. Of the 
four main aspects in the ACCE evaluation process, 
clinical utility may be considered the most com-
plex component to examine. To properly analyze 
the clinical utility of a genetic test, one needs to 
delineate the natural history of the specific clini-
cal disorder, potential risks and benefits, quality 
assurance of test performance, and associated 
economic, ethical, legal, social, and policy. 
Accurate information concerning the natural his-
tory of a clinical disorder is important. If the dis-
order has serious health consequences, the typical 
age of onset can be utilized to determine the opti-
mal age for either screening or early diagnostic 
testing. Unfortunately, however, many genetic 
and neoplastic diseases show wide variation in 
age of onset. It is important to evaluate the avail-
ability and effectiveness of interventions. In the 
absence of effective interventions, other measur-
able effects, such as psychological and emotional 
impact of the information provided by the testing 
results on the patients, should be considered. 
When balancing the pros and cons of implement-
ing a new DNA test, health risks need to be con-
sidered. Health risks might represent morbidity 
and mortality associated with subsequent proce-
dures for diagnosis or treatment. They might also 
encompass less quantifiable risks, such as anxiety 
and stigmatization. Economic evaluation (includ-
ing test cost, available CPT codes, insurance cov-
erage, etc.) and resource allocation should also be 
included in the appraisal of clinical utility.

In order to evaluate the clinical utility of a 
genetic test, it is necessary to examine the merit 
and suitability of existing evidence. Similar to the 
appraisal of analytic and clinical validity, impor-
tant characteristics that affect the quality of data 
on clinical utility include the size and selection 

criteria for the study population, the type of 
 laboratory assay and interventions employed, and 
the study design [16]. The quantity of data refers 
to the number of studies and the number of total 
subjects in the studies. A study that addresses the 
clinical utility of a molecular test needs to pro-
vide a detailed description of the intervention and 
the context in which the intervention was con-
ducted. The quality of studies depends on their 
methodology and execution. Randomized con-
trolled trials, cohort, or case-control studies may 
be employed to evaluate the impact of a molecu-
lar test on health outcomes. Of these study meth-
ods, randomized controlled trials are believed to 
offer the most reliable evidence. If the sample 
size is adequate, randomization ensures equal 
distribution of both known and unsuspected con-
founding factors. For instance, cohort studies 
allow participants to select the desired therapeu-
tic option, and this choice may reflect the test 
subjects’ characteristics, thus introducing 
 confounding factors. Blinding of participants, 
providers, and investigators further minimizes 
the likelihood of placebo effects and observa-
tional bias. As in studies of clinical validity, meta-
analysis of similar studies may be used to estimate 
the overall consistency of clinical utility.

Formal Assessment of the Clinical 
Validity of Molecular Tests: Selection  
of Best Available Evidence  
and Meta-Analysis

To conduct a formal assessment of the clinical 
validity of a genetic test, it is imperative to criti-
cally appraise the quality and appropriateness of 
available evidence. Important variables that influ-
ence the overall quality of evidence for clinical 
validity include the number and quality of studies, 
the size and selection criteria for the study popu-
lation, the type of assay employed (as well as its 
analytic validity), and the endpoints  measured [16]. 
The quantity of data pertains to the number of 
studies and the number of total subjects in the 
studies. The quality of studies is usually dictated 
by their designs. For instance, well-designed 
 longitudinal cohort studies usually provide the 
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information necessary to evaluate the strength of 
association between a genotype or biomarker and 
a specific phenotype or disorder. Furthermore, 
meta-analysis of similar studies may be employed 
to estimate the overall consistency of clinical 
validity, and to compensate for the small size of 
individual studies. Since the majority of genetic 
tests are designed to detect events of relatively 
low frequency, longitudinal cohort studies are 
usually not feasible. Thus, case-control and cross-
sectional studies can serve as alternative sources 
of evidence. For currently available genetic tests, 
their clinical validity may remain uncertain and 
evolve as evidence accumulates.

Pilot Studies

Often, there is limited or no available information 
in the literature regarding the potential clinical 
validity and applicability of a molecular test, and 
pilot studies are needed to collect data. Even 
though evidence gathered in pilot studies is not 
sufficient for clinical application, pilot studies 
provide valuable information regarding the readi-
ness of a novel molecular test for transition from 
the lab bench to routine care. They subject the 
DNA testing process to the daily pressures of 
clinical testing, thus determining its analytic per-
formance characteristics under real-world condi-
tions. They offer the opportunity to observe and 
document the test subjects’ responses to the test-
ing process. It was through just such a process of 
pilot studies that the now-accepted universal cystic 
fibrosis carrier screening program was developed 
and assessed [17]. Additional information that 
may be acquired in pilot trials includes patterns of 
decision-making, economic information, and accep-
tance rates at various stages of the testing process. 
Consequently, pilot studies provide the foun-
dation necessary for subsequent clinical trials.

Ethical Issues

In addition to providing diagnostic, prognostic, 
and therapeutic information, molecular genetics 
and oncology tests have ethical, legal, and social 

implications. One of the greatest concerns about 
genetic testing, especially when performed 
presymptomatically, involves the potential for 
insurance or employment discrimination, stigma-
tization, and long-term psychological harms from 
testing. Unfortunately, these effects are difficult to 
study. Since the beginning of the Human Genome 
Project, genetic discrimination has been a concern 
of policy-makers, legal scholars, and patients at 
risk for genetic disorders [18]. In an attempt to 
prevent genetic discrimination and the misuse of 
genetic information in employment and health 
insurance, the Genetic Information Nondis-
crimination Act (GINA) was finally passed by the 
U.S. Congress and signed into law by President 
G.W. Bush on May 21, 2008 [19]. However, it may 
take several years before the impact of GINA on 
the incidence of reported genetic discrimination 
can be properly evaluated.

Even if the results of genetic testing do not 
affect clinical management or lead to a measur-
able effect on health, genetic information can 
help individual and family decision-making. For 
highly penetrant, single-gene disorders that lack 
effective therapy, genetic information provides 
assistance to inform reproductive or other life 
decisions. For example, testing for Huntington 
disease cannot alter the course of this lethal con-
dition, but it allows mutation carriers and noncar-
riers to prepare for the future with that prognosis 
in mind. For complex multifactorial illnesses, 
genetic testing provides information regarding 
association between genotypic variations and risk 
of disease. Even though predictive genetic testing 
can identify individuals at increased risk, it may 
also cause increased distress and anxiety. Several 
studies have examined the effects of BRCA1/2 
testing on individuals and their families. The 
majority of studies have reported no significant 
change in psychological outcomes among asymp-
tomatic mutation carriers relative to baseline [20]. 
However, there appear to be short-term increases 
in anxiety among asymptomatic mutation carri-
ers [21]. It is also important to understand the 
factors that determine interest in predictive 
genetic testing. The usefulness and personal value 
attached to knowledge about genetic disease or 
cancer risk may vary by age or other personal 
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characteristics. For example, the implications of 
a positive test for a BRCA1 or BRCA2 mutation 
differ considerably for a woman of child-bearing 
age compared with a perimenopausal woman, 
because oophorectomy is an important preven-
tion option for such women. In addition, some 
testing decisions may be motivated by the desire 
to help offspring. A female patient with cancer 
may be more interested in BRCA1/2 testing if she 
has daughters who might in turn benefit from the 
information in terms of their own inherited risk 
and by making presymptomatic testing in them 
easier and less expensive since the family’s BRCA 
mutation will then be known.

Real-World Considerations

The experience of predictive testing for muta-
tions in the BRCA1 and BRCA2 genes is instruc-
tive for our more general discussion of transition 
of research assays to clinical tests. When those 
two genes were first discovered in the mid-1990s 
and their penetrance shown to be appreciably 
less than 100%, there were some medical ethi-
cists and others who argued that the unknowns 
were too great to justify clinical mutation testing 
at that point. Yet, it is only by embarking on 
widespread testing, even before all the answers 
were in, that we were able to further refine the 
genotype–phenotype correlations, predictive 
value, and clinical penetrance of these mutations. 
Similarly, testing for K-ras mutations in colon 
cancers, while only modestly predictive of 
response to anti-EGFR inhibitor therapies, soon 
led to the revelation that mutation in another 
gene involved in the same signaling pathway, 
BRAF, could help explain a proportion of the 
K-ras-negative nonresponders. It can be expected 
that continued testing in the actual clinical 
setting will reveal other genes and mutations 
that will steadily raise the predictive value of the 
molecular tests. Yet another example is the 
almost overnight and universal adoption of array-
comparative genomic hybridization in place of 
standard karyotype analysis for diagnostic work-up 
of patients with nonspecific developmental 
delay, autism, or  congenital malformations [22]. 

Although the approach suffers from the uncer-
tainty produced by the large number of novel 
deletions and duplications revealed in every 
human genome, it is only through continued 
clinical testing, with reporting of such findings 
in a centralized database, that the true genotype–
phenotype relationships will become known and 
established. Thus, while we have attempted in 
this chapter to delineate the various parameters 
and approaches that should be followed in order 
to make the determination of when a research 
test is ready for transition to a clinical test 
(Table 17.1), it is also important to allow some 
latitude during the phase at which the biology 
and molecular pathology of these disease pro-
cesses are still being worked out. And that notion 
will be even more true in the coming years as we 
move beyond single-gene molecular tests into 
whole-genome arrays and next-generation 
whole-genome sequencing [23].

Conclusions

Molecular pathology presents a particularly 
 difficult challenge to the systematic methodol-
ogy proposed by evidence-based pathology for 
the gathering of evidence and classification of 
such evidence using various evidence level 
schemes. The rapid developments in the field, 
complexity of molecular tests, massive quantity 
of data accrued, and the almost infinite number 

Table 17.1 Critical parameters for determining  transition 
of a research molecular test to a clinical test

Analytic validity
Clinical validity
Clinical utility
Literature review
Meta-analyses
ACCE approach
EGAPP recommendations
Pilot studies
Randomized controlled trials
Professional practice guidelines
Cost and reimbursement policies
Ethical and psychosocial considerations
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of  analytes addressed by these new technolo-
gies render many of the requirements delineated 
in this chapter – for positive mutation controls, 
clinical validation, etc. – almost moot. Clearly 
the genie is out of the bottle, and we have little 
choice but to move forward thoughtfully, incor-
porating the approaches we have described 
when possible, but not adhering to them so rig-
idly that patients are deprived for too long of 
their access to these potentially life-saving 
technologies.
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Archie Cochrane in his seminal book Effectiveness 
and Efficiency (1972) argued that “health services 
should be evaluated on the basis of scientific evi-
dence rather than on clinical impression, anecdotal 
experience, ‘expert’ opinion or tradition” [1]. This 
tenet of evidence-based medicine (EBM) [2, 3] 
has resonated strongly in the ethos of contempo-
rary practice, fueling growth in the number of 
clinical guidelines and changes in healthcare pol-
icy and financing. Further driving the EBM-
movement are preventable adverse events related 
to medical errors, now recognized as a cause of 
more deaths than those from breast cancer or motor 
vehicle accidents [4–6]. Recently, the American 
Recovery and Reinvestment Act of 2009 (ARRA) 
allocated approximately $19 billion to promote the 
adoption of electronic health records (EHR), with 
the idea that such technology can make health care 
more evidence-based and less error-prone [7, 8].

Despite public enthusiasm for EBM, there has 
been relatively little change in physician behavior, 
and in fact, the data shows most physicians have a 

difficult time following guidelines [9]. Supporting 
these observations is the striking regional variation 
in the use of healthcare resources, measured by 
rates of physician visits, hospitalizations,  specialist 
referrals, laboratory testing, and interventions, 
which does not correlate with improved quality or 
access to healthcare, better outcomes, or increased 
patient satisfaction [10, 11]. In fact, for some mea-
sures related to health prevention, such as influ-
enza vaccination rates, increased spending is 
associated with worse care [10]. This is concern-
ing given that national health spending in the U.S. 
reached $2.3 trillion in 2008, or 16.2% of the gross 
domestic product [12].

Laboratory services are particularly vulnerable 
to potential misuse and overuse [13, 14]. Use of 
laboratory services can be inflated by public expec-
tations for frequent testing [15] and the practice of 
“defensive medicine” [16, 17]. Meanwhile, labora-
tory tests are subject to systemic and random errors, 
and a “shot-gun” approach to testing increases the 
potential for false-positive and false-negative results 
[18]. Operational efficiency in the laboratory and 
 clinical areas can be adversely affected by higher 
testing volumes from inappropriate and unnecessary 
orders, compromising turnaround times for labora-
tory tests with clinical urgency [19]. Downstream, 
this can directly impact the length of stay for 
patients, as in the emergency department [20].  
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In terms of financial impact, it has been estimated 
that eliminating redundant  laboratory tests alone 
would save about $8  billion a year in the U.S. [21], 
and the burden of ensuring medical necessity for 
testing is gradually being shifted to the clinical 
laboratories themselves [22].

With technological advances in laboratory 
automation and instrumentation greatly reducing 
analytical errors, more errors now take place out-
side the laboratory in both test ordering and result 
interpretation [23–25], with the majority made 
before the patient specimen reaches the labora-
tory [26, 27]. At the same time, the information-
oriented agenda of EBM has given pathology 
data an increasingly central role in initiating and 
coordinating patient care, from diagnosis to treat-
ment decisions to disease monitoring. It is 
believed that more than half of all medical deci-
sions are influenced by laboratory data [28, 29], 
with one study demonstrating that 94% of 
requests to the electronic medical record were for 
laboratory results alone [30]. Thus, diagnostic 
errors are of particular concern to both physicians 
and patients, which is highlighted by the fact that 
diagnostic errors are the most common reason for 
medical malpractice claims [31–33].

It has been observed that many physicians have 
testing- and diagnosis-related questions as they see 
patients, but are unable to find answers because of 
lack of time and poor organization of information 
sources [34, 35]. Hayward has said that “physi-
cians suffer from information hunger in the midst 
of plenty” [36], which rings particularly true in our 
internet-based era [37], where online tools such as 
PubMed currently hosts more than 19 million cita-
tions for the biomedical literature (http://www.
ncbi.nlm.nih.gov/pubmed; last accessed 12 May 
2010). A meta-analysis of various studies has found 
that diagnosis-related questions comprise, on aver-
age, 24% of information need, and another 49% are 
related to therapy and drug information [38].

In several areas, diagnostic tests are becoming 
synonymous with targeted therapeutics, inspiring 
the term “theragnostics” [39]. For example, the 
Food and Drug Administration (FDA) has rec-
ommended that maraviroc, part of a new class of 
HIV/AIDS drugs that are chemokine coreceptor 
5 (CCR5) antagonists, only be used after testing 

confirms that a patient is infected with a  
CCR5-tropic viral strain [40, 41]. In cancer, 
 testing for newly identified molecular drivers for 
lung adenocarcinomas, colorecetal cancer, breast 
cancer, and oligodendrogliomas, among others, 
has been critical for establishing patient eligibil-
ity for targeted chemotherapy, and for guiding 
patient management [42–45].

As part of this trend, the number of tests in 
molecular diagnostics is rapidly expanding, particu-
larly for genetic diseases, infectious diseases, and 
cancer. In our institution, for tumor diagnostics 
alone, we currently have 17 distinct assays which 
cover gene mutations, DNA methylation alterations, 
microsatellite instability, and diagnostic and prog-
nostic FISH assays, and we are planning on adding 
five new tests over the next 6 months. In the coagu-
lation laboratory, we have added four new tests over 
the past 4 months, for a current total of 52 different 
tests. Our current main reference laboratory catalog 
lists approximately 7,140 different tests. Both the 
rate of test menu growth and the sheer number of 
test options present challenges for clinicians.

Although most specialists are able to stay rea-
sonably current in their narrow area of expertise, 
the situation for the typical general internist or 
surgeon is becoming increasingly untenable. 
Invariably, this leads to an increase in subspe-
cialty consults, with a resulting increase in cost. 
But these days, even specialists may find it diffi-
cult to select or interpret the correct test. 
Unperceived or unexpressed information needs 
are difficult to identify [46], but some inappropri-
ate test requests may be due to unacknowledged 
knowledge gaps. In one example of a routine test, 
25-hydroxyvitamin D is the best test to assess 
vitamin D status under most clinical situations, as 
opposed to 1-25 dihydroxyvitamin D. At our 
institution, we noticed that displaying test selec-
tion guidelines for vitamin D in a “pop-up 
reminder” every time a physician requested 1-25 
dihydroxyvitamin D caused a 71% reduction in 
1,25-(OH)

2
 vitamin D orders [47]. In virtually 

every case where the 1,25-(OH)
2
 vitamin D was 

not ordered, the user ordered the more appropri-
ate 25-OH vitamin D test.

Laboratory knowledge is specialized and 
local, and can be difficult to acquire. A laboratory’s  
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unique menu of tests and policies may differ from 
other laboratories. This information may not be 
readily accessible on global search engines or 
online references, and is most often maintained 
internally by the laboratory itself. Thus, local 
pathologists have an opportunity to play a more 
proactive role in the total testing process [48].

The entire process of laboratory testing, 
starting with the decision to order a test, should 
be evidence-based, and ideally, cost-conscious 
[49, 50]. There is a need for decision support 
tools to aid physicians in the selection and 
interpretation of laboratory tests. Clinical 
pathologists must also know how to evaluate 
the clinical context and usefulness of tests in 
order to make recommendations to hospital 
administrators and clinicians about adding, 
replacing, or eliminating tests from the test 
menu, as well as guiding what defines appropri-
ate testing for specific clinical situations. 
Pathologists must also consider whether or not 
studies were carried out in the appropriate pop-
ulations suspected of the target disease, and not 
just those with obvious disease compared to 
healthy controls [51]. With these consider-
ations, a number of statistical tools exist to help 
evaluate and compare test  performance, and 
some of these will be discussed briefly below.

Statistics

The assumption behind EBM is that there are 
clinically meaningful subgroups of patients, fol-
lowing a similar disease progression and sharing 
comparable risks for morbidity and mortality. 
Identifying a patient as belonging to one of these 
subgroups allows the clinician to extrapolate 
treatment and management decisions from the 
published literature. The ability of a particular 
test to successfully distinguish subjects in the 
appropriate diagnostic and prognostic subcatego-
ries can be quantified in a number of ways.

With a binary test result (i.e., positive or nega-
tive), a 2-by-2 table comparing the test results to 
true disease status via an independent gold stan-
dard (i.e., biopsy) can be used to assess test accu-
racy (Fig. 18.1). Accuracy can be represented as 
diagnostic sensitivity (probability of a positive 
test, given the patient has the disease) and diag-
nostic specificity (probability of a negative test, 
given the patient does not have the disease) [52]. 
The likelihood ratio (LR) combines these two 
measures, and represents the probability of a test 
result in the presence vs. absence of disease. For 
example, the LR for a positive test result (LR(+)) 
compares the sensitivity, or probability of a posi-
tive test result in a disease-positive  population, to 

Fig. 18.1 Effect of disease prevalence on test performance
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the false-positive rate, or probability  of a positive 
test result in a disease-negative  population. A 
LR(+) of four means that the positive test is 4 
times as likely to occur in patients with disease as 
in patients without disease, which is not the same 
as saying that patients with  disease are 4 times as 
likely to have a positive test result when com-
pared to those without disease.

Usually the question is whether or not the patient 
has the disease, and not about the likelihood of a 
particular test result. Bayes’ theorem allows us to 
make a statement about the inverse conditional 
probability, in this case, the probability of disease 
given a test finding (see Fig. 18.2). This can be 
reported as the positive predictive value (PPV; 
probability of disease, given a positive test result) 
and the negative predictive value (NPV; probabil-

ity of no disease, given a negative test result), and 
calculated from the same 2-by-2 table, as long as 
the total numbers are adjusted to reflect the 
 preexisting disease prevalence in the population 
(see Fig. 18.1). Both the PPV and NPV are affected 
by disease prevalence, whereas sensitivity and 
specificity remain independent of prevalence.

Bayes’ theorem can be used to evaluate the 
clinical utility of a new test. For example, a result 
of >13 pg/ml for high-sensitivity troponin  
T (hsTnT) has been reported as a superior marker 
for acute coronary syndromes (ACS) when com-
pared to a result of >0.03 ng/ml by conventional 
cardiac troponin T (cTnT), based on improved 
sensitivity (from 35 to 62%) and a small increase 
in the area under the ROC curve (see below), 
although the latter was statistically insignificant 

Fig. 18.2 Application of Bayes’ theorem. P(X) means probability of event X. P(X|Y) means probability of event X, 
given event Y
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and the improvement in sensitivity was at the cost 
of decreased specificity (from 99 to 89%) [53]. 
When using Bayes’ theorem to look at the predic-
tive power of a positive test for ACS, it was 
 demonstrated that even very high values of hsTnT 
do not establish a diagnosis of ACS if the pretest 
probability is low [54]. In fact, with a pretest ACS 
probability of 10%, a positive cTnT is better for 
predicting ACS (PPV of 80%) than a positive 
hsTnT (PPV of 39%).

Even so, many test evaluations are reported 
using sensitivity and specificity assessments, as 
predictive value estimates require prior knowl-
edge of disease prevalence and outcomes data, 
which may be difficult to obtain for target patient 
populations. At the same time, because many tests 
have results that are on a continuous spectrum, 
they can exhibit all sensitivity and specificity 
 values (from 0 to 100%) depending on the partic-
ular value chosen to represent the “positive” result 
cutoff (e.g., hsTnT of >13, >14, >15 pg/ml, etc.). 
Receiver-operating characteristic (ROC) plots are 
often used to provide a more global view of test 
performance, as these plots depict all possible 
sensitivity and specificity pairs for a test [55]. The 
area under the curve (AUC), also called the c-sta-
tistic or c index, can range from 0.5 (no discrimi-
natory ability) to 1.0 (perfect discrimination), and 
is a summary measure that can also be used to 
compare whole ROC curves to one another. An 
alternative is to restrict the area comparisons to a 
relevant portion of the curve at a desired sensitiv-
ity or specificity. The tangent to the ROC curve is 
equivalent to the LR(+), when that particular test 
result (with its given sensitivity and specificity) is 
chosen as the decision threshold.

Given that multiple test values are represented in 
a ROC plot, a decision threshold must be chosen 
that incorporates considerations about the relative 
costs of false-positive and false-negative results, as 
well as the prevalence of disease in the population 
being tested. A simplified approach is to calculate a 
slope using the following equation: m = (false- 
positive cost/false-negative cost) × ((1 – preva-
lence)/prevalence), and then choose the point on the 
ROC plot where the tangent has this slope [55].

In practice, calculating the true “cost” of 
false-positive and false-negative results requires 

thoughtful conversations between the laboratory 
and clinicians, and thresholds may change over 
time. In our hospital, setting notification alarms 
for critical laboratory values is one such exam-
ple of this ongoing process, which is negotiated 
through hospital committee meetings consist-
ing of representatives from the laboratories, cli-
nicians, and hospital administration. Performing 
callbacks for critical lab values are labor- and 
time-intensive for the laboratory, and should be 
limited to those values that are truly dangerous. 
Using the published literature, consultations 
with clinicians, and our own internal data on 
the volume of critical callbacks for each analyte 
per result value, we made the case for changing 
the lower limit for glucose callbacks from less 
than 60 mg/dl (<3.3 mmol/l) to less than 45 mg/
dl (<2.5 mmol/l), which has resulted in 2,136 
fewer calls per year (reduction of 5.7% for all 
callbacks) [56].

As previously mentioned, ROC curves clas-
sify patients by their likelihood of having a posi-
tive test result, but prognostic models evaluate 
tests for their ability to predict future risk of dis-
ease, and may be of greater interest to patients 
and clinicians [57]. Calibration examines the pre-
dictive value of a test result, and compares the 
observed vs. predicted probabilities of disease 
within predetermined subgroups of patients shar-
ing similar risks of disease. Risk stratification is 
initially performed using an existing disease 
model based on traditional assessment factors, 
and is compared to a revised stratification scheme 
including the independent test result. The percent 
of reclassified patients after the addition of the 
new test can be used as an indicator of clinical 
impact. As a result, disease prevalence and the 
way subgroups are modeled have a major effect 
on assessments of calibration. The Hosmer-
Lemeshow test [58] and the net reclassification 
index (NRI) [59] are two examples of formal 
calibration measures.

The ROC curve and the AUC are less sensitive 
than the NRI when evaluating the addition of new 
tests/predictors for disease. In particular, the 
impact on AUC by a new test is blunted when the 
preexisting model already strongly predicts dis-
ease, even if the test is independent from the other 



310 J.Y. Kim et al.

predictor variables [57]. For example, among 
patients with ACS, early stratification helps assign 
high-risk patients to more aggressive and costly 
therapies. Patients can be assessed using the clini-
cally robust GRACE (Global Registry of Acute 
Coronary Events) risk scores [60] to evaluate their 
risk for mortality and acute myocardial infarction 
(AMI) events. NT-proBNP (N-terminal pro-B-
type natriuretic peptide) has been identified as a 
biomarker that is useful in patients with AMI [61], 
and also seems to provide prognostic information 
for short- and long-term mortality and future MI 
[62–64]. Investigators examined the effect of add-
ing admission NT-proBNP levels to the GRACE 
risk score in predicting early and late deaths fol-
lowing ACS [65]. The AUC for 30-day mortality 
was 0.79 for NT-proBNP, 0.84 for the GRACE 
risk score, and 0.85 for the combination. The dif-
ference between AUC for the combination of pre-
dictors vs. the GRACE score alone was not 
statistically different (p = 0.20), but the impact on 
NRI of adding NT-proBNP to the GRACE model 
was a 24.4% overall improvement (p < 0.001).

At the same time, when looking at subgroups, 
the combination of NT-proBNP and GRACE 
score was better for predicting survivors at 30-days 
(NRI of 41.4%), and did worse at predicting 

 nonsurvivors [65]. Thus, the clinical utility of 
NT-proBNP is likely to be poor if it is used to 
identify patients at high-risk of early events [66]. 
In considering the NRI, it is therefore important 
to consider the changes in risk categories for spe-
cific outcomes of interest, rather than just the 
overall score.

Decision Support

EBM attempts to quantify the probabilities associ-
ated with medical decisions, and encourages clini-
cians to face these uncertainties explicitly, rather 
than relying on personal intuition or expert opin-
ion alone. While laboratory tests are rarely used in 
isolation, the results are often integrated with med-
ical history, physical examination findings, and 
imaging studies to assess the likelihood of disease. 
This complex decision-making process has been 
difficult to capture, model, and analyze.

Still, a variety of decision support tools are 
available to assist physicians in the selection and 
interpretation of laboratory tests (Table 18.1). 
Specific examples of these tools will be described 
later in the chapter. In most cases, these tools 
must be reviewed regularly to ensure the most 

Table 18.1 Decision support tools for the selection and interpretation of laboratory tests

Tool Comment(s)

Diagnostic algorithms Available in books or online
Published practice standards Available in books or online
Disease or condition- 
specific templates

Includes admission, procedure and chemotherapy templates for specific conditions (e.g., 
heart failure) that specify appropriate tests, medications, and nursing orders. Templates 
ensure that the correct interventions are accomplished at the appropriate time and 
standardize care for a specific condition

Interpretive guidelines Available in books or online. Particularly useful are institution-specific online 
laboratory handbooks

Consultative interpretive 
services

Consultative services provided by clinical pathologists to aid in the selection and 
interpretation of laboratory tests

Computerized provider  
order entry

Permits real time decision support at the time the test is ordered. Can be used to redirect 
physicians away from unnecessary tests and suggest more appropriate alternatives

Computer-based decision 
support

Includes query functions for specific signs, symptoms, or diseases and recommend 
appropriate tests and their interpretation

Computerized reminder  
alert systems

Can automatically alert physicians to flagged values or missing/delayed screening or 
monitoring tests

Online or text handbooks Describes test performance characteristics, interferences, false-positive and negative 
results, drug effects and other information
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up-to-date content. This is most easily accom-
plished with online formats, as decision support 
tools available only in print media usually become 
obsolete a short time after publication.

To be effective, decision support tools must be 
used by physicians and the suggested advice 
acted upon. Physicians are notoriously finicky 
when it comes to using technologies that will pre-
sumably improve their practice. Careful consid-
eration must therefore be given to fitting the tool 
directly into the physician’s regular workflow, as 
well as to making these systems extremely easy 
to access and to use [67]. In a study by Bates 
et al. [68], the authors highlight their “Ten com-
mandments for effective decision support.” We 
strongly recommend this paper for anyone who is 
designing or planning implementation of a deci-
sion support system. The ten key points included 
the following:
  1. Speed is everything
  2. Anticipate needs and deliver in real time
  3. Fit into the user’s workflow
  4. Little things can make a big difference
  5. Recognize that physicians will strongly resist 

stopping
  6. Changing direction is easier than stopping
  7. Simple interventions work best
  8. Ask for additional information only when 

you really need it
  9. Monitor impact, get feedback, and respond
 10. Manage and maintain your knowledge based 

systems
An important caveat concerning decision sup-

port tools concerns their clinical and scientific reli-
ability. The availability of numerous lay or 
quasi-professional websites that provide medical 
advice underscores this growing problem [69–71]. 
It can be difficult even for experienced physicians 
to assess the quality of information offered by 
these websites, especially considering that the 
physicians may access the site for the very reason 
that they are unsure about the most appropriate 
way to proceed. Furthermore, information pro-
vided by medical organizations and societies is not 
prima fascia reliable. Contradictions can be easily 
found when searching different professional 
 websites or publications about the same clinical 

problem. For these reasons, the physician must 
approach decision support tools with a degree of 
healthy skepticism. Careful consideration should 
be given to the source of the information and how 
current the information provided is.

Examples of Decision Support Tools

Order Form Design
A simple example of a decision support tool is 
the laboratory order form. In most cases, whether 
on paper or a computer screen, the requisition 
form is the primary and obligatory interface 
between the clinician and the laboratory. 
Requisition design has been shown to have a sig-
nificant impact on ordering practices. Simple 
changes, such as grouping or separating tests on 
paper forms or adding or deleting tests from the 
first-view of a test menu in a computerized order 
entry system, can change test ordering behaviors 
dramatically [72–75].

Unfortunately, in many current configurations 
of order entry systems, user interfaces are not 
designed to be flexible, and cannot be easily 
modified or rapidly updated by the laboratory. 
Most are not designed to interface directly with 
the laboratory information system (LIS), and 
their administration is often outside the purview 
of the laboratory. Going forward, innovative mid-
dleware solutions may be able to enhance the 
flow of information between the local laboratory, 
LIS, and provider order entry systems [47].

Diagnostic Algorithms
Diagnostic algorithms have been employed for 
decades in the clinical laboratory to control test 
utilization and to ensure that the most appropri-
ate tests are selected in the correct sequence. 
Many algorithms also provide interpretive infor-
mation to confirm or rule out a specific condi-
tion. The classic example is the thyroid reflex 
algorithm in which the physician requests a 
“thyroid screen” which enables the laboratory to 
perform a predetermined sequence of tests (i.e., 
thyroid-stimulating hormone, if low or high 
result, follow with thyroid hormone testing). 
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Careful consideration should be given to the 
reflex and diagnostic thresholds chosen, so as to 
achieve the maximum number of diagnoses for 
the number of tests performed [76]. As a further 
example, Fig. 18.3 shows a reflex  testing strat-
egy for celiac disease screening that is soon to be 
in use at the Massachusetts General Hospital. 
This algorithm was developed because many 
physicians in our institution were confused about 
the correct tests to order to evaluate a patient for 
celiac disease. Available tests on our menu 
include antitissue transglutaminase IgA and IgG, 
a celiac disease panel, anti-endomysial IgA and 
gliadin IgG and IgA. If a physician types “celiac 
disease” in our online laboratory handbook, a 

list of tests with recommendations for the most 
appropriate screening test(s) is displayed, as 
shown in Table 18.2. If the physician selects the 
“celiac disease panel,” this order will trigger 
automatic performance of the reflex test panel, 
shown in Fig. 18.3. Decision support in the case 
of celiac disease testing therefore occurs on two 
different levels, one when the physician types in 
the test request in the online handbook, and the 
other when they request an approved reflex test-
ing algorithm. Collectively, these interventions 
assist the physician in test selection, help to 
eliminate unnecessary tests, and encourage 
use of the algorithm approved for use in our 
institution.

Fig. 18.3 Reflex screening algorithm for celiac disease at the Massachusetts General Hospital tTG, tissue transglutaminase

Table 18.2 List of tests for celiac disease that appear on the online laboratory handbook of the Massachusetts general 
hospital

Test name Comment(s)
Antitissue transgluta minase IgA The IgA tissue transglutaminase test is the single most efficient serologic 

screening test for the diagnosis of celiac disease. The use of antigliadin 
antibodies as a screening test is no longer recommended

Celiac disease panel Includes Tissue Transglutaminase IgA and a total IgA level
Endomysial IgA antibody Note: For initial screening of celiac disease please do not order Endomysial IgA 

but instead order Tissue Transglutaminase IgA. It is currently recommended in 
most screening algorithms for celiac disease

Gliadin IgG and IgA antibodies Note: This test is performed at an external reference lab
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Published Practice Standards

Practice standards for the diagnosis and manage-
ment of various conditions are available from 
many sources, including textbooks, online publi-
cations, and various media produced by medical 
professional organizations. These standards are 
intended to give physicians general approaches to 
specific clinical conditions, although the physi-
cian may need to adjust the overall approach to 
suit the needs of individual patients. For example, 
the American Diabetes Association (ADA) pro-
vides online up-to-date clinical practice recom-
mendations available from the ADA website 
(http://www.diabetes.org). Taking this approach 
one step further, some institutions have devel-
oped locally approved practice guidelines based 
on expert review of the available evidence. In 
some cases, these guidelines are incorporated 
into the admission or order entry system of the 
hospital as disease- or condition-specific tem-
plates. These templates provide standard orders 
for pharmacy, nursing care, consultations, and 
laboratory testing. All that is required is that the 
ordering physician selects the template, and a 
standard set of orders is automatically performed 
efficiently, in a predetermined sequence. In our 
institution, we employ a large number of admis-
sion templates. For example, we have developed 
a “rule out acute myocardial infarction” template 
that specifies (among other things) the following 
set of cardiac marker tests:
 1. CPK+CK-MB and Troponin T at 0 h from 

presentation
 2. Troponin T at 8 h from presentation
 3. Troponin T at 16 h from presentation
 4. ECG at 0, 8 and 16 h from presentation

This testing strategy was developed to stan-
dardize test ordering for myocardial infarction 
and to reduce excess utilization of cardiac mark-
ers, including redundant orders, and unnecessary 
repeat testing for total creatine kinase (CK) and 
its isoenzyme CK-MB. The template is supple-
mented with online decision support treatment 
strategies (Fig. 18.4). Soon we plan to eliminate 
CK-MB entirely, again reflecting the need to keep 
decision support tools up-to-date.

Consultative Interpretive Services

Interpretations of laboratory tests, provided by a 
laboratory pathologist or other qualified expert, 
can be valuable tools in assisting clinicians. 
Without an accompanying interpretation, labo-
ratory tests can often be misinterpreted. For 
example, we encountered a patient who had 
been misdiagnosed with protein S deficiency, 
which had led her to abort her pregnancy due to 
fears of recurrent venous thromboembolism. 
Neither she nor her physician realized that pro-
tein S typically decreases during normal preg-
nancy. In another case, the diagnosis of von 
Willebrand disease was missed in a newborn, 
because the clinicians did not know that von 
Willebrand factor is typically elevated above a 
patient’s baseline at birth, which can mask the 
diagnosis. In addition, the newborn was ill from 
infection and internal bleeding at the time of 
testing, and acute illness also elevates von 
Willebrand factor above a patient’s baseline. In 
a third case, an experienced hematologist 
thought that slightly elevated hemoglobin A2 in 
a patient with sickle cell trait indicated coexist-
ing beta thalassemia. Fortunately, this third case 
example occurred at our institution, which pro-
vides interpretations by pathologists for hemo-
globin electrophoresis and other complex 
laboratory tests. The interpretation for this 
patient stated that the results are consistent with 
sickle cell trait and concomitant alpha thalas-
semia trait, based on the relatively low percent-
age of hemoglobin S and the low MCV. 
Hemoglobin S can falsely elevate hemoglobin 
A2 due to co-elution, without beta thalassemia. 
Thus, a misdiagnosis was avoided.

Surveys of physicians receiving pathologist 
interpretations with their specialized coagulation 
test results showed that 98% find the interpreta-
tions “useful or informative.” In addition, 
responses indicated that 72% of interpretations 
reduced the number of tests needed to make a 
diagnosis, 72% helped avoid a misdiagnosis, and 
59% shortened the time to diagnosis [77].

Interpretations can also improve physicians’ 
abilities to select the appropriate test(s) needed 
to reach a diagnosis. Laboratory test ordering 
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 patterns were studied immediately after we 
implemented a coagulation interpretation service 
for a group of outside hospitals, and the results 
were compared to ordering patterns after the 
interpretation service had been in place for 2.5 
years. The number of coagulation test ordering 
errors decreased by nearly two errors per requisi-
tion during the study period [77]. Furthermore, 
initially, over 63% of requisitions had 4 errors, 
but at the end of the study period, this was reduced 
to only 10%. For example, clinicians had fre-
quently ordered antigen assays (immunoassays) 
to assess for protein C, protein S or antithrombin 
III deficiency, but after receiving interpretations 
for 2.5 years, they more frequently ordered func-
tional assays, which are the appropriate tests to 
order. The interpretations include mention that 
antigen assays are inadequate because they are 

not able to detect type II (qualitative) deficien-
cies, as they do not assess protein function. In 
contrast, functional assays are able to detect both 
type I (quantitative) and type II deficiencies. The 
results of this study provided evidence that inter-
pretations can successfully modify physicians’ 
ability to order tests appropriately.

Interpretations are most informative if all the 
relevant results for a specimen are interpreted 
together, while also taking into account the 
patient’s medical history. That is to say, patient-
specific interpretations are more valuable than 
generic interpretations. If a patient has low 
 protein C, low protein S, and normal antithrom-
bin III, it is most useful for the interpretation to 
indicate that the most likely explanation for this 
combination of findings is warfarin or vitamin 
K deficiency, rather than list all the possible 

Fig. 18.4 Example of a decision support strategy for 
non-ST segment elevation acute coronary syndrome at 
the Massachusetts General Hospital. Hx history; PE 
physical examination; ECG electrocardiogram; TIMI 
thrombolysis in myocardial infarction; CHF congestive 

heart failure; Tnt troponin T; ASA aspirin; UFH unfrac-
tionated heparin; LMWH low molecular weight heparin; 
IIb/IIIa, glycoprotein IIb/IIIa inhibitor; GP blycoprotein; 
D/C, discharge; cath, catheterization; PCI percutaneous 
coronary intervention
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causes of low protein C, and then separately list 
all the possible causes of low protein S. 
Incorporating the normal antithrombin III result 
into the interpretation allows the exclusion of 
some other possible causes of low protein C and 
low protein S, or at least renders them much 
less likely. The interpretation can also give 
 suggestions for follow-up testing, if appropri-
ate. In the current example, the interpretation 
would indicate that testing can be repeated any 
time when the patient has not had warfarin for at 
least 20 days, because it can take that long for 
protein S to recover to normal after warfarin 
discontinuation.

In another example, if a patient on warfarin 
tests positive for a lupus anticoagulant, the inter-
pretation can notify clinicians that lupus antico-
agulants are capable of artifactually prolonging 
the prothrombin time and international normal-
ized ratio (PT-INR), potentially overestimating 
the patient’s level of warfarin anticoagulation. 
The interpretation can note that a chromogenic 
factor X assay can be performed on this specimen 
if requested, to help determine whether or not the 
lupus anticoagulant is artifactually prolonging 
the PT-INR. In an additional example, for a 
patient with low antithrombin III and 3+ protei-
nuria on a urinalysis, the interpretation can note 
that proteinuria can cause an acquired loss of 
antithrombin III, but other possible causes of low 
antithrombin III can also be included for com-
pleteness. Table 18.3 shows some additional 
example interpretations.

An interpretive service is even more efficient 
when combined with strategic testing algorithms 
that simplify the diagnostic process for clinicians. 
Test requisitions or order entry systems can be 
simplified to offer the appropriate algorithms. 
For example, for a patient undergoing evaluation 
because of a bleeding history, the clinician can 
order a “prolonged PT and PTT evaluation,” and 
the laboratory will follow an algorithm (Fig. 18.5) 
to reach the diagnosis on one specimen, without 
performing any unnecessary tests. The alterna-
tive is cumbersome and inefficient, as well as 
inconvenient for the patient: the clinician waits 
for the PT or PTT results to come back abnormal, 
collects another specimen, and tries to remember 

which coagulation factors to order for which 
 prolongation, and subsequently would need to 
collect yet another specimen if it turns out that 
lupus anticoagulant or inhibitor tests are indi-
cated. The clinicians can also order all of these 
tests up front, but this wastes healthcare resources 
if the tests turn out to be unnecessary.

Test requisitions or order entry systems can be 
designed to encourage appropriate test ordering 
of complex tests by offering these as test algo-
rithms or panels, rather than simply listing all test 
names individually. For example, most clinicians 
do not realize that “ristocetin cofactor” is the 
name of the test for von Willebrand factor activ-
ity, so they order “von Willebrand factor antigen” 

Table 18.3 Examples of interpretations for the coagula-
tion service at MGH

Scenario Interpretation

Normal von 
Willebrand  
results in the 
presence  
of an acute  
phase reaction

The von Willebrand panel values are 
normal, however, fibrinogen is 
elevated at 590 mg/dl. Both fibrinogen 
and von Willebrand factor are acute 
phase reactants. Therefore, it is 
possible that von Willebrand factor is 
elevated above the patient’s true 
baseline. Taken together, it is not 
possible to exclude von Willebrand 
disease with certainty at this time. If a 
second study has not been performed, 
a repeat study when the patient is not 
likely to be in an acute phase reaction 
(normal value for fibrinogen) may be 
informative
The patient is blood type O. Normal 
blood type O adults have a mean von 
Willebrand factor level of approxi-
mately 75%

Mildly low 
antithrombin III 
result in a  
patient on 
heparin

Antithrombin III is slightly low. 
Heparin administration can cause 
slight decreases in antithrombin 
within several days, secondary to 
increased clearance. If hereditary 
antithrombin deficiency is strongly 
suspected, the assay may be repeated 
once the patient has been off heparin 
for at least 1–2 weeks
The specimen submitted has 
prolonged PTT. When the sample was 
treated with an enzyme that degrades 
heparin, the PTT corrected into the 
normal range indicating the prolonga-
tion is due to the presence of heparin 
in the sample
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when they see it listed on the requisition or order 
entry system. By ordering the antigen test with-
out the activity test, type 2 von Willebrand dis-
ease could be misdiagnosed as normal. In 
contrast, if a von Willebrand panel is offered on 
the requisition or order entry system, the appro-
priate laboratory tests can be ordered. If panels or 
algorithms are offered, the requisition or order 
entry system should explain what tests are or may 
be included (for example, on the back of the req-
uisition). For hospital laboratories, it is recom-
mended to initially obtain approval from the 
hospital’s medical policy committee for the algo-
rithm (reflex test) protocols that the laboratory 
would like to use. Clinicians still should have the 
ability to order a test individually.

Computer-Based Decision Support

Computer-based decision support has been rap-
idly evolving over the past 10 years. This support 
can take various forms, such as publicly available 
online search-capable websites, customized 

 computer programs to aid in specific medical 
decisions (e.g., pulmonary function tests, electro-
cardiograms, acid–base disorders) and institu-
tion-specific decision support tools provided on 
the intranet. A number of websites open to physi-
cians and the general public are available to assist 
in test selection and to provide interpretive infor-
mation on laboratory testing.

A typical example is “WebMD symptom 
checker” (http://symptoms.webmd.com). This 
website allows the user to search by disease, 
symptom, laboratory test, or other parameters. 
The site provides general information about labo-
ratory test selection and interpretation within the 
overall context of the disease or symptom-based 
search. Other similar web-based tools are avail-
able, with the majority of these being not limited 
to test selection alone.

Another example is “Lab Tests Online” (http://
www.labtestsonline.org). On this site, the user 
can search by test, condition, disease, or screen-
ing to access peer-reviewed information on a 
number of medical topics. Most of these online 
sites essentially take the place of standard texts in 

Fig. 18.5 Simplified algorithm for a prolonged PTT evalu-
ation at the Massachusetts General Hospital. An unexplained 
prolonged PTT with a normal PT is likely to be clinically 
significant, and an evaluation to determine the etiology of 
the prolongation is warranted. Even if the evaluation leads 
to the diagnosis of factor XII deficiency, which does not 
cause bleeding, the knowledge will spare the patient unnec-
essary transfusions of fresh frozen plasma. The algorithm 
shown is highly simplified and the nuances followed by the 
laboratory are more complex than what is shown. The first 
step determines whether or not the prolongation is due to 

heparin, low molecular weight heparin, or fondaparinux anti-
coagulation. If any of these anticoagulants explains the pro-
longation, no further testing is performed. If none of these 
anticoagulants are detected, a mixing study is performed, 
where the patient’s plasma is mixed 1:1 with normal plasma, 
and the PTT is performed on the mixture both at time 0 and 
after a 2-hour incubation. Depending on the results, factor 
assays, lupus anticoagulant tests, and/or Bethesda assays 
(for a factor inhibitor) may be subsequently performed, 
until the etiology of the prolongation is determined. PTT, 
partial thromboplastin time; PT, prothrombin time
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print, where the reader must search the table of 
contents or index. Online sources are easier to 
use, are mobile, can be accessed from any com-
puter, and can be updated on a continual basis. To 
counter this online threat, publishers of estab-
lished medical textbooks often offer online access 
and search functions with purchase of the text-
book. For example, Cecil Medicine 23rd edition 
offers an online Expert Consultant with purchase 
of the book.

Online (or Text) Interpretive Guidelines

Many laboratories provide physicians with online 
or printed test interpretation guidelines. For 
example, Mayo Medical Laboratories publishes 
an annual interpretive handbook. The 2009–2010 
edition contains over 800 pages describing the 
use, interpretation and appropriate cautionary 
comments for a number of tests on the menu. As 
one example, under the listing for plasma free 
metanephrines, the utility of the test is explained, 
stating that this test is the most sensitive (nearly 
100%) test to screen for elevated catecholamines, 
recommending fractionated 24-h urinary cate-
cholamines as a confirmatory test, and cautioning 
about specific drugs that may elevate cate-
cholamine levels, producing borderline elevated 
plasma metanephrine levels. Printed references 
are very useful, but are not as readily available as 
online formats. Importantly, many generic online 
references provide similar information, but the 
interpretative data is not specific to any labora-
tory. These generic online sources may yield 
erroneous recommendations when tests have 
substantial differences in performance from one 
laboratory to another. This is particularly true for 
genetic testing, where different laboratories may 
test for a varying number of mutations for a given 
genetic disorder.

Computerized Alerts and Reminders

The amount of individual patient information 
that the typical physician must be aware of is 
constantly expanding. Most organizations are 

attempting to assist the physician in organizing 
and storing this information in the form of EHR. 
The EHR is slowly replacing paper-based medi-
cal records in hospital and outpatient settings. 
Beyond simply storing and displaying clinical 
information in an organized user friendly format, 
the EHR also permits various alerts and remind-
ers to be incorporated into the physician’s regular 
workflow. This may include reminders to perform 
screening tests on selected patients, abnormal 
and critical value alerts and other features, such 
as disease management protocols to ensure that 
important tests have been ordered and abnormal 
results acted upon appropriately.

For example, patients receiving long-term 
anticoagulation therapy with Coumadin must be 
monitored at regular intervals using a PT-INR 
test to ensure adequate anticoagulation therapy. If 
the patient’s PT-INR becomes subtherapeutic, the 
patient may develop a fatal clot or embolism. 
Excessive anticoagulation may result in bleeding 
or hemorrhage. Usually the physician schedules 
office visits for these patients at various intervals 
and provides a prescription for outpatient PT-INR 
testing at more frequent intervals. Once the 
patient has left the office, the physician has no 
way to be certain that the patient actually went to 
the laboratory for the regular PT-INR testing, 
unless the office staff periodically reviews the 
patient’s records to check for the results of recent 
testing. Noncompliance on the part of the patient 
can have potentially catastrophic consequences. 
On the other hand, if the test orders for PT-INR 
have been recorded in an order entry system, it is 
possible to implement an alert system such that 
the physician is made aware if the patient did not 
show up for testing within an appropriate time 
interval. Furthermore, the system could alert the 
physician of nontherapeutic PT-INR values, thus 
permitting more timely adjustments to therapy.

Another example is the use of electronic dis-
ease management protocols to ensure that impor-
tant tests and procedures have been performed 
according to accepted standards of care. For 
example, patients with diabetes mellitus require 
regular monitoring of hemoglobin A1c, urinary 
microalbumnin, lipids, and other parameters. 
Given the large number of diabetic patients in a 
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typical primary care practice, it is relatively easy 
for important screening and monitoring tests to be 
overlooked. Some insurance plans have mandated 
that testing be performed regularly as part of pay-
for-performance incentives. The simplest approach 
to ensuring that appropriate testing is performed 
is to use an electronic diabetic patient monitoring 
template, with automatic reminders when patients 
have not received recommended testing. A meta-
analysis of the effectiveness of computerized 
decision support systems has found that automatic 
prompts are associated with improved provider 
adherence, when compared to systems that 
required users to activate the system [78].

Decision Analysis and Forecasting 
Models in the Laboratory

While decision support analysis can be valuable 
to assist physicians caring for individual patients, 
these tools can also be applied to populations of 
patients and to aid in forecasting trends in the 
clinical laboratory. The capability to aggregate 
laboratory data across populations of patients 
presents opportunities to systematically improve 
medical care on a population-based level. 
Implementation of electronic medical records 
facilitates this process by incorporating labora-
tory data into electronic formats that can be ana-
lyzed to detect correlations and trends. The 
analysis can be performed by the LIS, specialized 
middleware, or by computer programs that can 
access the electronic medical record. Examples 
of specific applications include surveillance for 
infection control, safety and adverse event analy-
sis, operations and workflow analysis, quality 
improvement, and forecasting trends in clinical 
laboratory services.

Surveillance

Figure 18.6 shows quarterly rates of MRSA infec-
tion in our hospital tracked over time. As a histori-
cal baseline, we had 1.21 infections per 1,000 
patients in 2005. The rate has steadily declined, 
reaching 0.45 infections per 1,000 patients in the 

most recent quarter. This data is derived by 
 integrating data supplied by the microbiology LIS 
with clinical electronic medical records. The data 
could also be analyzed by location, underlying 
disease or other factors, permitting infection con-
trol officers to target specific high-risk areas for 
further reductions in these infections.

Another example of using laboratory data for 
surveillance in our hospital involves the use of anti-
microbial sensitivity data. The microbiology labo-
ratory has implemented a special program that 
collates sensitivity data for various organisms that is 
analyzed annually to produce an antibiotic sensitiv-
ity profile. This information assists our infectious 
disease department to produce a list of recom-
mended antibiotics for various infections based on 
our local antimicrobial sensitivity patterns.

Safety and Adverse Event Analysis

Our hospital utilizes a real time electronic safety 
reporting system. This system replaced our older 
paper-based “incident reporting system,” that was 
inefficient and often reported events too long after 
the incident to permit successful investigation and 
corrective action. Any employee can file an elec-
tronic safety report. The reports are reviewed by the 
hospital Office of Quality and Safety, and, depend-
ing on the location and severity, by the departmental 
Quality Chair and Quality Manager. Potential out-
comes include investigation and/or follow-up of the 
event, recommendations,  implementation of correc-
tive actions, and  aggregation of the event data into 

Fig. 18.6 Quarterly rate of methicillin-resistant Staphy-
lococcus aureus (MRSA) infection per 1,000 patients over 
time. Q quarter
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the quality and safety database. We receive  quarterly 
aggregated reports listing the number of event types 
(e.g., blood/blood products, diagnosis/treatment, 
specimen issues), severity levels (e.g., near miss, no 
harm, temporary minor harm, permanent harm), 
and aggregated details about events (e.g., number of 
delayed tests, wrong patient, wrong test, mislabeled 
specimens, ABO complications). The aggregated 
data allows us to target quality improvement 
 activities around the most common or high-risk 
events, and to track the success of our interventions 
over time.

Forecasting Trends in Clinical 
Laboratory Services

The clinical laboratory is a service-oriented 
department that must anticipate and respond to 
the needs of clinical services. Most laboratory 
trends occur fairly slowly, and can be monitored 
by projecting testing requirements and volumes 
using historical data. However, in some cases 
hospitals undergo abrupt changes in clinical ser-
vices that cannot be understood by historical 
trend data alone. For example, a hospital may 
open a new oncology or transplant center, merge 
and consolidate with other area hospitals or start 
a regional outreach program. These types of 
events may substantially change the test menu, 
test volumes, and influence the types of services 
that must be provided. In some cases, decision 
support tools can be applied to these types of 
challenges. For example, predictions of outreach 
test volumes can be obtained from the expected 
number of physicians and types of clinical prac-
tices, using decision support tools that contain 
databases of physician test ordering behavior.

Operations and Workflow Analysis

Some consulting companies and vendors of labo-
ratory instrumentation have developed proprietary 
computer-based systems to aid in operations and 
workflow analysis. Most of these are based on 
process flow and lean principles, and are linked to 
benchmarking databases that allow the laboratory 

to compare themselves to similar operations. 
These services are available for a fee or are 
included as part of a large instrument purchase. 
There are also inexpensive off-the-shelf decision 
support programs to aid the laboratory in perform-
ing their own operations and workflow analysis. 
These systems include the basic tools that are 
required to map operational processes and per-
form basic analyses based on lean principles.

Decision Support Incorporated  
into ARRA Legislation and Other 
Considerations

Beginning in 2011, Medicare physicians who 
implement and report “meaningful use” of EHR 
will be eligible for substantial financial incentives 
approved in the recent ARRA (American Recovery 
and Reinvestment Act) legislation. The Centers for 
Medicare & Medicaid Services (CMS) has recently 
proposed that the “meaningful use” criteria should 
include the use of “five clinical decision support 
rules relevant to [each] specialty” [79]. In response, 
the Meaningful Use Workgroup of the HITPC 
(Health IT Policy Committee) has recommended 
that the wording be amended to explicitly require 
that one of these five clinical decision support  
rules address efficient diagnostic test ordering [80]. 
Thus, decision support tools for laboratory test 
ordering are likely to become a major issue for 
providers and hospitals going forward.

At the same time, liability issues regarding the 
dissemination and future use of such tools remain 
murky [81]. Programs using a “closed-loop” sys-
tem to make decisions directly controlling a 
patient’s treatment are viewed as medical devices 
under control of the FDA, but physicians may be 
held liable when they are making the final assess-
ment for care.

Finally, demonstrations of clinical decision sup-
port systems have primarily focused on their effects 
on practitioner performance [78], and not patient 
outcomes. Those that have included patient out-
comes in evaluations of decision support tools have 
found inconsistent results; many were hampered 
by inadequate numbers of patients, and failed 
to have the statistical power to demonstrate 
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improvements  [78]. Particularly when it comes to 
patient outcomes related to preventative care, 
 studies may have to rely on multicenter cluster-
randomized controlled trials [82]. However, given 
the substantial time and resources required for such 
collaborations, it is unclear how many such trials 
will be feasible. Furthermore, it is difficult to imag-
ine having multiple repeated evaluations of a deci-
sion support system every time new knowledge is 
added to the system. The long track record and near 
ubiquitous use of computers for supporting safety, 
efficiency, and quality in other nonhealthcare 
related commercial, industrial, and scientific enter-
prises suggests that using reasonable proof of effec-
tiveness, rather than imposing onerous requirements, 
may be the way to move forward.

Conclusion

The number and complexity of available labora-
tory tests continues to increase at a rapid pace. 
Staying current with accepted standards for labo-
ratory testing for diagnosis, monitoring and prog-
nosis is extremely challenging, particularly for 
nonspecialists who see a diverse patient popula-
tion. Decision support tools to aid physicians in 
appropriate test selection and interpretation are 
widely available and will become increasingly 
important. The most effective and practical deci-
sion support tools are developed or selected 
locally at the institutional level and embedded in 
the regular workflow of the physician. Many of 
these tools can be incorporated into the electronic 
medical record system where they can be easily 
accessed by any physician while caring for their 
patients. Careful attention to the “Ten 
Commandments for effective clinical decision 
support,” described by Bates et al., [68] will 
enhance the chances for success in the design and 
implementation of new decision support tools.
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In the field of clinical pathology and laboratory 
medicine, test complexity and test menus con-
tinue to expand, necessitating that clinicians 
obtain domain expertise to make the appropriate 
testing decisions for patients. The efficiency 
focus is increasingly central because healthcare 
costs continue to rise and diagnostic testing rep-
resents a significant portion of the incremental 
cost increase [1]. Institutions can no longer afford 
to diagnose and manage patients without consid-
ering the overall cost-benefit impact of laboratory 
tests. Computerized physician order entry 
(CPOE) and clinical decision support systems 
(CDSSs) are one modality through which evi-
dence-based medicine and practice guidelines 
can be deployed to assist clinicians at the time 
orders are being placed with the goals of improv-
ing the quality of care, decreasing errors, and 

reducing costs. After a brief introduction to 
CDSSs, this chapter uses specific examples to 
illustrate how evidence-based clinical pathology 
can be used to implement CDSSs and monitor 
their success through cost-benefit evaluation.

Introduction to Clinical Decision 
Support Systems

CPOE, which allows physicians to enter orders 
electronically rather than using paper requisi-
tions, provides the backbone for CDSSs. While 
the implementation of CPOE requires significant 
analysis, planning, and resources, the benefits are 
numerous, including standardization of practice, 
improved communication, automatic recording 
of auditing data, and prevention of medication 
misuse [2].

CDSSs within CPOE are powerful tools with 
which to influence test ordering behavior. 
Evidence shows that a substantial portion of diag-
nostic testing may be unnecessary, that clinicians 
may be ordering testing inappropriately and that 
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the cost associated with diagnostic testing is high; 
making these areas obvious targets for CDSSs. 
Common strategies include implementing rules-
based order entry with reminders, offering testing 
guidelines and displaying test-specific (e.g., test 
charges) or patient-specific (e.g., past results, 
patient medications) information, and using order 
sentences to promote use of desired tests. In con-
trast to retrospective reminders and educational 
sessions, these strategies have generally produced 
successful results.

Most CDSSs use electronic reminders at the 
time of ordering, but, importantly, do not dictate 
how clinical care should be delivered. CDSSs 
should be designed such that clinicians view 
these systems as helpful tools instead of nui-
sances. Moreover, appropriate interventions and 
guidelines must reach all users of the laboratory, 
be introduced at the very level of individual 
 decision-making, and be nonintrusive [1].

Basics of CDSS Implementation

The implementation of CDSSs should involve a 
multidisciplinary team of clinicians, patholo-
gists, hospital administration, and information 
technology. Pathologists are integral to the 
 process because they understand the technical 
and clinical aspects of laboratory testing, have 
multispecialty medical knowledge, are data- 
oriented, commonly work on multidisciplinary 
teams, and understand the underlying cost- 
benefit implications.

Each institution must choose its own strategy 
and appropriate test(s) to target based on discus-
sion with the multidisciplinary team and audit of 
current practices. As an example, chart reviews 
can be performed to assess the degree of inap-
propriate utilization of laboratory tests based on 
established or internally derived clinical criteria. 
Once a target test or group of tests is chosen, a 
careful design of the intervention is critical for 
success. It is particularly important that the inter-
vention makes it quick and easy for clinicians to 
make the correct decision. The effectiveness of a 
particular intervention should be assessed through 
a randomized study, including an experimental 

group that is exposed to the intervention and a 
control group that is exposed to the current state, 
which is facilitated by use of the computer 
 system. A reasonable amount of time should also 
be allowed to measure outcomes in both groups 
consistent with the learning curve and volume of 
testing.

Although initial development of the CDSS is 
important, a committee structure responsible for 
maintaining and updating the CDSS based on 
external and internal evidence, literature review, 
and frequent audits is critical for success, and 
depending on the size of the institution more than 
one may be needed. For example, one may  handle 
medication-related issues and another may tackle 
laboratory issues.

Our group has developed a number of such 
interventions and randomized studies. Their 
design and outcomes are described in the follow-
ing sections to illustrate the general principles 
described above.

Optimization of Laboratory Test 
Utilization

Reports have shown that as many as 10% of com-
monly ordered tests are redundant [3] and at least 
30% of arterial blood gases may be unnecessary 
[4]. Possible explanations for the excessive test 
ordering include clinicians’ difficulty in deter-
mining when the most recent test was performed 
or lacking the knowledge regarding the appropri-
ate testing interval. Redundant testing is not only 
costly but can also lead to unnecessary interven-
tions or treatments if false-positive results are 
produced. However, managing test utilization has 
been difficult and interventions such as feedback, 
education, rationing, and financial incentives, 
have shown limited and/or transient reductions in 
utilization [5–9].

CDSS within CPOE can reduce redundant 
testing by providing utilization reminders at the 
time of clinical decision making. Furthermore, 
CDSSs link the ordering clinicians with the par-
ticular order, simplifying utilization audits. These 
electronic systems also allow outdated tests to be 
removed from the system.
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The published literature shows that  well-designed 
electronic reminders can decrease the number of 
redundant laboratory tests and decrease the overall 
number of inappropriate tests performed, thus 
resulting in improved patient care and cost savings 
[10–13]. Some successful  interventions include 
displaying the date and the results from the most 
proximal previous test [13], computerized 
 prediction of abnormal results based on previous 
results [12], and display of length of stay informa-
tion based on diagnosis [11]. The selection of 
appropriate targets for intervention is critical, as 
either high volume, commonly ordered tests or 
those with the highest variable cost  typically 
have the highest postinterventional impact. 
Importantly, these interventions seek to increase 
the proportion of tests ordered which are appro-
priate, not merely reduce overall test volume.

In one randomized study at our institution, 
redundancy checks were triggered when clini-
cians ordered metabolic profiles, urinalysis, 
therapeutic drugs, urine cultures, sputum cul-
tures, stool cultures, Clostridium difficile cul-
tures, and fibrin split products [10]. In most 
cases, the interval defining redundancy was 
<20 h, although the intervals were selected 
through a review of the available evidence. Tests 
ordered within the first 24 h of admission were 
exempted. The default was set to cancel the test 
order, but the clinician could override the deci-

sion support by providing a clinical justification 
for the override (Fig. 19.1).

Urinalyses, chemistry profiles and urine  cultures 
accounted for a high percentage of redundant 
orders [10]. Redundancy alerts for these tests were 
also the most likely to be overridden by the 
 clinician. Some common reasons for a clinician to 
override a reminder were: (1) condition warrants 
more frequent testing, (2) clinical condition has 
changed, (3) last result requires confirmation, (4) 
previous specimen unsatisfactory, and (5) different 
site or testing conditions [10]. However, upon 
reviewing the medical records the override reasons 
were justified in less than 50% of cases. It was also 
discovered that many clinicians were never exposed 
to the electronic reminders because laboratory tests 
could have been ordered through sets or templates 
independent to the CDSS [10]. Specimens were 
also sometimes sent to the laboratory directly 
 without an order being placed, and lab policy at the 
time required processing such specimens.

Overall, the study found that the CDSS was 
effective at reducing redundant tests. In the inter-
vention group only 27% of redundant tests were 
ultimately ordered, while in the control group 51% 
were ordered (Table 19.1). Importantly, the CDSS 
in this instance did not have any adverse impact on 
the quality of patient care, indicating that imple-
mentation of similar electronic reminders may be 
warranted in targeted areas.

Fig. 19.1 An order for a test can be overridden by providing justification (from Bates et al. [10], with permission of 
Elsevier)
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Antiepileptic Drug Monitoring

Antiepileptic drug monitoring accounts for almost 
20% of the therapeutic drug testing  performed in 
clinical laboratories [14]. Our group developed 
appropriateness criteria for antiepileptic drug 
monitoring based on evidence-based medicine 
and expert opinion [14, 15]. These criteria were 
not developed as extensive guidelines for clinical 
appropriateness, but instead to provide simple 
rules with which to evaluate levels. The appropri-
ate indications included suspicion for toxicity or 
noncompliance, baseline measurement once the 
patient has reached steady state or a change in 
dose or clinical condition (Table 19.2). Based on 
these criteria, a high percentage of antiepileptic 
drug levels were found to be ordered inappropri-
ately, usually due to routine daily ordering [14]. 
Furthermore, the inappropriate levels were rarely 
clinically important.

We next implemented a CDSS to improve the 
appropriateness of antiepileptic drug level moni-
toring [16]. For orders which appeared redun-
dant, an automated redundancy reminder was 
provided (Fig. 19.2a), while nonredundant orders 
prompted an educational screen with common 
indications for monitoring and pharmacokinetic 
parameters of each antiepileptic drug (Fig. 19.2b). 
These two interventions led to a 27 and 4% order 
cancellation rate, respectively. Inappropriate test 
ordering decreased from 54 to 15%. Furthermore, 
the results were sustainable over a 4-year follow-
up period, suggesting that CDSSs can durably 
affect clinician behavior.

Appropriateness of Digoxin Levels

Digoxin levels are commonly performed to 
assess therapeutic efficacy and compliance as 
well as evaluate for toxicity. Appropriate 
 timing of levels depends upon many factors 
including clinical condition, patient status, 

Table 19.1 CDSS effectiveness at reducing redundant tests

Intervention (n = 437) Control (n = 502)
Test Number ordered Number performed Number ordered Number performed
Urinalysis 136  35 (26%) 185  85 (46%)

Chemistry 20 profile 113  37 (33%) 143  81 (57%)

Urine culture 110  22 (20%)  91  50 (55%)

Sputum culture  39  14 (36%)  28  18 (64%)

Stool culture  15   3 (20%)  14   3 (21%)

Other  24   6 (25%)  41  20 (49%)

Total 437 117 (27%) 502 257 (51%)
a The reminders were delivered in the intervention group and triggered, but not delivered, in the control group
From Bates et al. [10], with permission of Elsevier

Table 19.2 Appropriateness criteria for antiepileptic 
drug monitoring

Measuring a serum level is always appropriate
Within 6 h after a seizure recurrence
In the event of suspected dose-related drug toxicity a

In the event of suspected patient noncompliance
Measuring a serum level is appropriate only if the 
blood sample is drawn in steady state conditions, i.e., 
after 4 half-lives on an unchanged dose regimenb

As a baseline measurement after starting antiepileptic 
drug therapy
As a control measurement after a change in the dose 
regimen
After adding a second drug with a potential for 
interaction with the antiepileptic drugc

After a change in the patient’s liver or gastrointestinal 
tract function

a For phenytoin, nystagmus, ataxia, and drowsiness; for 
carbamazepine, gastrointestinal symptoms, diplopia, and 
dizziness; for phenobarbital, sedation, depression, and 
cognitive decline; and for valproic acide, hepatic dysfunc-
tion and tremor
b Steady state is assumed to be reached after 6 days for 
phenytoin, after 3 days for carbamazepine and valproic 
acid, and after 20 days for phenobarbital
c Another antiepileptic drug, warfarin, isoniazid, or 
rifampicin
From Schoenenberger et al. [14], with permission
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Fig. 19.2 (a and b) Examples of notes on phenobarbital drug level (from Chen et al. [16], © 2003–2010 American 
Society for Clinical Pathology; © 2003–2010 American Journal of Clinical Pathology)

pharmacokinetics, and patient location. Clinical 
criteria to evaluate the appropriateness of 
digoxin levels are available [17] and can be 
useful to guide clinicians and reduce the cost 
and time associated with inappropriate digoxin 
levels.

Canas et al. [18] used a combination of litera-
ture review and expert opinion to develop appro-
priateness criteria for monitoring digoxin levels 
(Table 19.3). Appropriate indications included 
suspected toxicity, high-risk patients, dosage 
adjustment or monitoring after steady state was 
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achieved, admission levels, serial determinations 
at least 10 days apart, and yearly routine monitor-
ing in outpatients. The authors determined the 
number of digoxin levels on both inpatients and 
outpatients that were drawn appropriately at their 
institution based on these criteria.

They found that many as 84% of inpatient 
digoxin levels had no appropriate indication 
[18]. Most frequently digoxin levels were drawn 
more often than every 10 days for routine moni-
toring. In fact, it was common to measure 
digoxin levels daily in inpatients. The percent-
age of appropriate levels was higher (52%) in 

the outpatient population. However, similar to 
inpatients, the main reason for inappropriate 
levels was routine or too frequent monitoring. In 
both the inpatient and outpatient setting the 
number of toxic levels was low and most likely 
misleading due to inappropriate ordering of the 
levels. In one patient, the dose of digoxin was 
decreased, otherwise no other interventions 
were done as a result of high levels.

This study demonstrated that introducing CDSSs 
with simple criteria for appropriate digoxin indica-
tions could improve the utilization of digoxin  levels 
without compromising clinical care. Cost savings 
associated with the CDSS were deemed to be 
 significant. As with antiepileptic drug monitoring, 
this approach could be taken for other therapeutic 
drugs, presumably with similar outcomes.

Appropriateness of Prostate-Specific 
Antigen

Prostate-specific antigen (PSA) testing is rela-
tively costly. Various guidelines are available 
that indicate clinical scenarios and patient popu-
lations in which PSA testing is deemed appro-
priate [19]. The American Cancer Society 
recommends providing information about PSA 
testing to men at average risk for prostate cancer 
starting at age 50 [20, 21]. PSA testing is also 
warranted to monitor disease progression and 
recurrence [22].

Poteat et al. [19] reviewed the available litera-
ture at the time of the study and developed a set of 
appropriateness criteria for PSA (Table 19.4). 
Testing indications included screening, prostate 
cancer workup, monitoring for cancer recurrence, 
and assessing treatment efficacy. Similar to other 
studies referenced above, the criteria were devel-
oped using evidence-based medicine which con-
siders both benefit and cost. Tests with marginal 
benefits, such as screening patients with a less 
than 10 year life expectancy, were not considered 
appropriate. The authors then examined the appro-
priateness of PSA testing at their institution based 
on these criteria [19] and developed an algorithm 
for examining whether clinically relevant new 
information was obtained from the testing.

Table 19.3 Appropriateness of serum digoxin level 
requests

Appropriate if
For both inpatients and outpatients:
1. Subtherapeutic response (either A, B, C, or D)

A.  No improvement or worsening of congestive heart 
failure or atrial fibrillation or flutter

B. Suspected noncompliance
C.  Concomitant use of an interacting drug (antacids, 

a kaolin and pectin combination [Kaopectate], 
neomycin, quinidine, spironolactone, nifedipine, 
cholestramine, verapamil)

D. Suspected malabsorption
2. Suspected toxicity (either A or B)

A. Appearance of arrhythmias suspected to be caused 
by digoxin (supraventricular tachycardia, 
atrioventricular conduction defects, multifocal 
premature ventricular contractions)

B. Noncardiac signs or symptoms of digoxin toxicity 
(visual changes, anorexia, nausea, vomiting, 
diarrhea, abdominal pain, confusion, headache)

3. High-risk patient (unstable or declining renal 
function, low serum potassium level, hypoxia, recent 
increase in diuretic dose)

4. Initiation of digoxin therapy or dosage adjustment 
after steady state reached (5 half-lives, 10 days)a

For inpatients:
5. Admission level for inpatients if no previous digoxin 

level within last 9 monthsb is available
For outpatients:
6. Routine monitoring annually in outpatients on stable 

dose of digoxin (inappropriate if level drawn less 
than every 10 months)b

a Ten days was chosen in this study as a conservative esti-
mate of the interval required to reach steady state, although 
some patients may reach steady state in 8 days
b Time intervals chosen by consensus of expert opinions
From Canas et al. [18]. © 1999 American Medical 
Association. All rights reserved
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The study concluded that most PSA testing 
was performed on outpatients and approximately 
one fifth of the orders were considered inappro-
priate. A CDSS using simple age- and frequency-
based criteria could have eliminated most 
inappropriate test orders without compromising 
clinical information leading to substantial cost 
savings in the laboratory.

Effect of Displaying Test Charges

Clinicians are typically unaware of the cost of 
tests and evidence suggests that displaying lab 
charges affects clinician behavior and might 
reduce cost and unnecessary test utilization 
[1, 23]. Feedback to the clinician regarding 
charges after they have placed the order, in an 
attempt to curb future unnecessary orders for 
expensive tests, has had variable affects [1]. 
However, displaying charges electronically using 
CPOE offers the advantage of communicating 
the information in real time. Furthermore, it is 
easy, nonintrusive and does not affect quality. 
Electronic display also provides ongoing rein-
forcement by displaying the charge each time the 

clinician attempts to order a test. Previous stud-
ies have been performed in the outpatient setting 
and have shown success using CPOE displays 
[23, 24].

Our institution performed a randomized con-
trolled trial with over 7,000 patients to determine 
whether the display of charges for inpatients at 
the time of ordering affected test utilization and 
cost, similar to that seen in studies on outpatients 
[1]. In the intervention group, charges were 
 displayed for nineteen clinical laboratory tests at 
the time of ordering and the total cost was tallied. 
The clinical laboratory tests were grouped in  
two categories: commonly and less commonly 
ordered. There was no significant difference 
between groups in the number of tests ordered in 
either category. In addition, there was no signifi-
cant decrease in charges or potential cost savings 
associated with the intervention.

The authors were surprised by the lack of impact 
from displaying associated inpatient laboratory 
charges [1]. Possible explanations include the 
percentage (53%) of orders placed through 
CPOE, resulting in the number of clinicians 
exposed to the intervention being smaller than 
expected. In addition, we displayed laboratory 

Table 19.4 Appropriateness criteria for measuring serum prostate-specific antigen concentration

Appropriateness Criteria

Appropriate Assessing prostate cancer progression after therapy
Evaluating treatment efficacy during therapy
Monitoring for prostate cancer recurrence 2–4 times per year: patients 1, 2, and 
3 years or more after treatment with curative intent receive a PSA assay every 3, 
4, and 6 months, respectively
Diagnostic workup and staging in men with signs or symptoms associated with 
prostate cancer
For men with carcinoma of unknown primary site
Establishing a baseline value before beginning therapy for benign prostatic 
hypertrophy with a 5 alpha-reductase inhibitor, such as finasteride

Appropriate but debated As once yearly screening of asymptomatic men aged 50–75 years; screening 
with PSA should be accompanied by rectal examination
Screening men with a family history of African-American men aged 40–75 years
As a staging modality to replace bone scan in selected cases of prostate cancer

Inappropriate Screening asymptomatic men older than 75 years or asymptomatic patients with 
less than 10 years of life expectancy
Screening asymptomatic men with no risk factors younger than 50 years or those 
with risk factors before age 40 years

From Poteat et al. [19]. © 2003–2010 American Society for Clinical Pathology; ©2003–2010 American Journal of 
Clinical Pathology
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charges as opposed to laboratory costs. The cli-
nicians may have been less sensitive to the for-
mer category.

Critical Results

Accrediting organizations such as the Joint 
Commission and the College of American 
Pathologists require that the laboratory commu-
nicate critical results to a licensed care provider 
in a timely manner [25, 26]. Critical results, 
particularly those associated with adminis-
tering certain medications can also signify 
worsening clinical conditions. For example, 
declining platelet counts in the setting of hep-
arin therapy raise the possibility of heparin-
induced thrombocytopenia. Many laboratory 
information systems are not sophisticated enough 
to flag trends in test results, such as declining 
values over time or lab test–drug interactions. 
CDSSs can be designed to alert clinicians when 
more complex scenarios regarding critical labo-
ratory results or changes in laboratory results 
are obtained. Furthermore, immediate notifica-
tion of clinicians can ensure that intervention is 
performed in a timely manner. Time to inter-
vention is critical as some studies have illus-
trated that delay in treatment can be significant 
[27, 28]. Several institutions have implemented 
CDSSs which page clinicians with results that 
meet their critical criteria and warrant immediate 
intervention [29–32].

In a study at our institution, the authors gathered 
baseline data and investigated the number of critical 
laboratory results each day, the time it took for a 
clinician to act on these results and the time it took 
for the patient’s clinical condition to resolve [33]. 
We evaluated high and low sodium, potassium, 
and glucose levels, and falling hematocrit. An 
average of 0.44 of these critical results per patient-
day was identified. The median time to treatment 
was 2.3 h and the median time until the condition 
was resolved was 14.3 h.

Potential treatment delays associated with the 
standard, telephone-based critical result report-
ing prompted the designing, and implementation 

of a CDSS to help improve the clinical response 
time [34]. CDSS rules were designed to individu-
alize critical results by accounting for changes in 
laboratory results over time, and patient–drug 
interactions (Table 19.5). For example, physi-
cians were paged when the patient’s serum potas-
sium was less than 3.3 mEq/L and the patient had 
an active order for digoxin. Our group also devel-
oped criteria to identify appropriate treatments 
ordered after the critical result, and measured the 
time to treatment ordered as well as time to criti-
cal condition resolved in the control and inter-
vention group. The median time until treatment 
ordered was significantly shorter for the interven-
tion group vs. control group (1.0 h vs. 1.6 h, 
P = 0.003; mean, 4.1 h vs. 4.6 h, P = 0.003). The 
time until the critical condition resolved also 
decreased (median, 8.4 h vs. 8.9 h, P = 0.11; 
mean, 14.4 h vs. 20.2 h, P = 0.11). The studies 
illustrate a decrease in time to notify the clini-
cians as well as a decrease in time to take the 
appropriate action. Physicians were also very sat-
isfied to be paged about these values – 95% of 
physicians reported a high level of  satisfaction 
with the approach. A key to success was being 
highly selective regarding which tests physicians 
were paged directly about.

Cost Benefits

Despite studies that indicate a reduction in 
 medication error rates and improved workflow 
and test utilization using CPOE and CDSSs  
[6, 35–37], relatively high costs and limited data 
on financial benefits may limit their implementa-
tion. Appropriate assessment of cost-benefit is 
difficult to perform since it involves various cat-
egories of cost across different hospital depart-
ments. Moreover, the cost benefit associated with 
reduction in high volume automated tests is lim-
ited, since a 50% reduction in test utilization may 
only translate into a disproportionately much 
smaller savings in the laboratory, which might be 
only 10–20% [38].

Total system-wide savings may be affected 
by decreased adverse drug events, improved 
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 workflow and efficiency, decreased drug costs,  
and decreased laboratory and radiological test 
 utilization [35]. Further interventions aimed at 
reducing hospital length of stay can translate into 
significant cost savings. For example, a CDSS that 
provided renal dosing guidance and recommend 
dose adjustments based on a patient’s renal func-
tion was shown to decrease length of stay [39].

At our institution, Kaushal et al. [35] demon-
strated cumulative savings of $16.7 million over 
a 10-year period ($2.2 million annualized) fol-
lowing implementation of CPOE and CDSSs. 
The greatest cumulative savings were renal dos-
ing guidance, nursing time utilization, specific 
drug guidance, and adverse drug event preven-
tion (Table 19.6).

Key Success Factors

Using experience with CDSSs at our institution, 
certain patterns emerged that determined the suc-
cess of our CDSS interventions (Table 19.7) [40]. 
Most importantly, the applications must not 

slow down the end user. Even extremely well-
documented decision support will fail if it takes 
too long to place the order. Our end users rated 
speed as much more important to them than either 
quality or cost [40]. Next, due to time pressure 
and performance demands, the information must 
be available readily when the clinician needs it. 
If too many interventions are implemented the 
overall speed of the system can be compromised 
negating the potential benefits.

CDSSs, rather than simply providing electronic 
information, should integrate data components such 
as drug level and abnormal lab and present data that 
clinicians may miss. In this  context, particularly 
useful are systems which remind clinicians to alter 
a drug dose based on declining renal function or 
which suggest a clinical action such as order a 
trough level based on a medication order for vanco-
mycin; so-called “corollary orders” [40]. These 
tools should be integrated into clinical workflow 
such that they are displayed at the time of clinical 
decision-making. Clinicians should not be able to 
easily ignore reminders, but in turn, the reminders 
should be informative and limited in volume. 

Table 19.5 Frequency distribution of alerts

Rule Alerting criterion No. (%) a

1 Hematocrit has fallen 10% or more since last result and is now less than 26% b 38 (19.8)

2 Serum glucose is greater than or equal to 400 mg/dL 34 (17.7)

3 Hematocrit has fallen 6% or more since previous result, and has fallen faster than 0.4% per 
hour since last result, and is now less than 26% and the patient is not on the cardiac surgery 
service b

32 (16.7)

4 Serum potassium is greater than or equal to 6.0 mEq/L  32 (16.7)

5 Serum potassium has fallen 1.0 mEq/L or more over the last 24 h and is now less than 
3.2 mEq/L c

 29 (15.1)

6 Serum potassium less than 3.3 mEq/L and patient has an active order for digoxin c  15 (7.8)

7 Serum sodium is greater than 160 mEq/L  5 (2.6)

8 Serum sodium has fallen 15 mEq/L or more in last 24 h and is now less than 130 mEq/L d  4 (2.1)

9 Serum glucose is less than or equal to 40 mg/dL  3 (1.6)

10 Hematocrit is less than or equal to 15% b  0 (0)

11 Serum potassium is less than or equal to 2.4 mEq/L c  0 (0)

12 Serum sodium is less than or equal to 115 mEq/L d  0 (0)
Total 192 (100)

a Combined number of occurrences in control and intervention groups, after exclusions
b For low or falling hematocrit, rule 1 takes precedence over rule 3, which takes precedence over rule 10
c For low or falling potassium, rule 5 takes precedence over rule 6, which takes precedence over rule 11
d For low or falling sodium, rule 8 takes precedence over rule 12
From Kuperman et al. [34], with permission from BMJ Publishing Group Ltd
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Some systems require clinicians to input a reason 
why the reminder was overridden. A mechanism 
should be in place to allow overriding reasons to 
be tracked and audited.

The CDSS should also be user-friendly by 
defaulting to the most common decision or by 
providing drop down menus instead of free text. 
Importantly, usability testing should be per-
formed by the end users, not the developers or 
pathologists.

CDSSs that stop clinicians from performing 
an action, such as ordering a test, should be 
avoided. Whenever possible an acceptable alter-
native should be provided. The decision support 
interventions should be simple and fit on a single 
screen without extraneous information that may 
result in clinicians’ quitting the ordering session 
before they reach the intended guideline.

Auditing the impact of the CDSS is also criti-
cal as many interventions do not produce the 
intended results. Feedback from end users is 
important to determine users’ satisfaction and col-
lect valuable suggestions for improvement [40].

Lastly, unanticipated problems should be 
expected. Our institution implemented a decision 
support system linked to a specific test, only to 
find that that test was ordered primarily through 
order sets and the majority of clinicians were not 

presented with the support [40]. Therefore, a 
troubleshooting team should be an integral com-
ponent of the process.

Future Directions

Review of the literature and data for our own 
institution illustrate that CDSSs designed using 
evidence-based medicine are effective at reduc-
ing the number of inappropriate laboratory tests 
and controlling cost. Each institution should 
determine appropriate target areas for CDSSs 
that promise to provide the highest impact. 
Internal audits and evidence-based guidelines are 
helpful tools in that respect. In our experience, 
CDSSs targeting test utilization, therapeutic drug 
monitoring, and critical test result communica-
tion are highly effective.

As technology expands and many institu-
tions implement CPOE that communicates bidi-
rectionally with the laboratory and handheld 
computers to guide specimen collection, the 
benefits of CDSSs can be magnified. Decision 
support may be implemented not only at the 
time of order entry, but also at the time of speci-
men collection. Some potential benefits include 
a reduction in the number of “no sample 

Table 19.7 Ten commandments for effective clinical decision support

 1. Speed is Everything User satisfaction depends largely on the speed of the application
 2.  Anticipate Needs and Deliver  

in Real Time
Information should be brought to the clinician at the time it is 
needed

 3. Fit into User’s Workflow Guidelines which are available for passive consultation are less 
effective than those which are built in to the ordering process

 4. Little Things Can Make a Big Difference Screen design and usability can have a big impact and should be 
carefully attended to

 5.  Recognize that Physicians Will Strongly  
Resist Stopping

Clinicians often override suggestions to cancel an order

 6. Changing Direction is Easier than Stopping Changing defaults within the ordering screen or providing 
alternate suggestions may be an effective way to change 
physician behavior

 7. Simple Interventions Work Best Reminders should be simplified and fit onto one screen
 8. Ask for Additional Information Only When  

You Really Need It
Requiring physicians to input extra data elements may decrease 
the success of a computerized guideline

 9. Monitor Impact, Get Feedback, and Respond Recording auditing data and gathering user feedback may help 
to improve the intervention

10.  Manage and Maintain Your  
Knowledge-based Systems

Systems should be monitored for frequency of alerts, reminders, 
responses, and overrides

Adapted from Bates et al. [40], with permission from BMJ Publishing Group Ltd
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received” and “wrong sample type” errors, 
which occur when a test is ordered but no 
 sample is drawn, or the wrong type of sample is 
drawn. Furthermore, such  systems in conjunc-
tion with barcode technology can prevent 
 specimen labeling errors [41–43]. Automated 
systems can also be put into place to allow 
orders to be added to existing specimens in the 
laboratory, when appropriate, reducing the need 
for additional phlebotomy. Ultimately, evi-
dence-based practice and CDSSs can capitalize 
on advances in information technology to 
improve workflow and quality and safety in 
healthcare, with the net being substantial 
improvement in all these areas.
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“Medical malpractice reform has long been the graveyard for high hopes and good 
intentions.”

– (D. Hyman, JD, Professor, University of Maryland School of Law, 2002) [1]

“Tort reform …hurts the hapless patients who  suffer grievous harm at the hands 
of incompetent doctors.”

– (Editorial opinion, The New York Times, January 2005) [2]

“The justice system in America works, and it works very well.”
– (Mark Lanier, JD, plaintiffs’ attorney, commenting on a $253.5 million jury 
award based on less than one hour of jury deliberations devoted to the 
 pathogenesis of the cardiac death of the plaintiff’s husband. August 2005) [3]

“Jury awards can be … inexplicable on any basis but caprice or passion.”
– (Justice Sandra Day O’Connor, US Supreme Court, commenting on a 1993 9th Circuit 
Court ruling) [4]

“Tears have always been considered legitimate arguments before a jury. Indeed, if counsel 
has them at his command, it may be seriously questioned whether it is not his professional 
duty to shed them whenever proper occasion arises.”

– (Proceedings, Tennessee Supreme Court, 1897) [5]
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“Tort” (from middle-English, essentially meaning 
“injury”) law is a complex set of procedures for 
decision-making, the purported goal of which is to 
use facts to resolve disputes. The problems at issue 
reflect an allegation – made by the plaintiff(s) – that 
carelessness has led to a personal injury. The careless, 

or “tortious” act (in legal parlance, “negligence”), 
can either be a wrongful deed or the failure to do 
something. Malpractice cases are specialized tort 
actions that are based on a plaintiff’s claim of 
 professional negligence (by physicians, dentists, 
lawyers, architects, engineers, etc.).

The quality of legal decisions in tort law 
depends on the soundness of the rules on which 
its procedures are based; the quality of available 
information; and the skill of ultimate decision-
makers in understanding and integrating those 
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factors [6, 7]. In medical malpractice cases as 
well as other kinds of “civil” (noncriminal) suits, 
“expert” witnesses are often the principal source 
of technical information that is introduced to the 
court [8]. Those individuals are usually – but not 
always – physicians themselves [9]. Lay jurors 
listen to presentations by the “experts” and the 
attorneys and are ultimately charged as the “find-
ers of fact.” They mix their community values 
with the evidence presented at trial, under the 
 direction of the trial judge, to reach a legal deci-
sion for either the plaintiff or the defendant.

The traditions of English common law have 
been refined over several centuries, and they are 
the foundation for administration of the tort sys-
tem, both conceptually and procedurally. Although 
many cases that enter the system are “resolved” 
and never come to trial, negotiations leading to 
that outcome are dominated by the opponents’ 
opinions of what the outcome would be if the case 
were to go to a jury. Early on, it became increas-
ingly apparent that lay jurors would likely require 
“expert” input to come to rational  conclusions 
concerning technically complicated issues (such 
as those in the area of medical  malpractice). For 
example, as early as the 1700s, judges opined that 
medical standards should be “testified-to by the 
surgeons themselves” [10]. That led to the custom 
for each party to engage its own “experts.” Sheila 
Jasanoff (John F. Kennedy School of Government, 
Harvard University) has stated that societies expect 
“experts” “…to have thought more carefully and 
responsibly than any of us, as individual citizens, 
could possibly hope to do” [11]. Whether or not 
that is always true is open to debate.

Great import has been attached to the ability of 
juries to deliberate in “good faith” and “good con-
science,” but much less concern has been expended 
over the quality of objective data provided to 
them. Because of the growing technological com-
plexity of society at large, good information is 
every bit as important as “good faith” or “good 
conscience.” Indeed, there is a real risk that, when 
presented with conflicting opinions on unfamiliar 
subjects, well-meaning jurors may, in “good 
faith,” be influenced by testimony in the realm of 
so-called “junk-science” [12].

Recent legal statutes and decisions have aimed 
to better the quality of tort law decisions by 

attempting to improve “expert” testimony. 
However, in analogy to the experience of many 
physicians with some aspects of “evidence-based 
medicine,” lawyers have found it easier to describe 
ideal scientific evidence than to effectualize it. 
This is particularly true because the Law has tra-
ditionally not been very discerning about scien-
tific rigor. It has instead focused on procedural 
priorities that are often incompatible with strict 
scientific standards. In other words, the practice 
of scientifically-based medicine and the practice 
of Law can be, and often are, very dissimilar indeed.

This overview examines the American tort sys-
tem from an evidence-based perspective, with a 
particular orientation towards medical malprac-
tice actions. It includes a discussion of standards 
for “outcomes analysis” in the Law; recognition 
and classification of errors made by the courts; the 
relationship between medical errors, “negligence,” 
and “standard of care”; and the issue of reconcil-
ing plaintiffs’ rights with medical–scientific facts. 
We also consider selected obstacles to developing 
a system that is capable of reaching evidence-
based decisions on complex scientific topics, 
including the interpretation of tissue specimens 
by pathologists.

High-Quality Decisions in Tort Law

It is impossible to discuss the importance of “good 
information” in the courts without first considering 
how one recognizes a high-quality, evidence-based 
outcome in a tort action. Because the legal process 
can be said to produce binary results (for or against 
a plaintiff ), an evaluation of its performance can be 
accomplished using measures that are familiar to 
pathologists. One such tool is the use of the familiar 
four-cell table, which compares given test results to 
accepted standards. This presentation allows for 
classification of results as “true positives,” “true 
negatives,” “false positives,” and “false negatives.” 
However, in reference to jury decisions, one could 
ask what standard of comparison should be used in 
that process. Many lawyers would say that the 
jurors’ judgment is itself that standard, and there-
fore only “true-positive” and “true-negative” results 
are operative in the courts. This viewpoint was 
apparent in an extreme form when the US Supreme 
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Court ruled that even the decisions of jurors who 
were actively using mind-altering drugs during a 
trial were valid [13].

From a scientific perspective, the approach 
just described is patently unsound. It is a closed 
circle that mechanistically compares a result with 
itself. Moreover, it represents a barrier to improve-
ment of the “test.” In other words, why study 
 performance when the test is already known to 
provide the best possible answer?

How does one rectify the problem? The authors 
believe that when a trial is centered on a puta-
tively erroneous pathologic interpretation, the 
final jury decision should be compared with the 
consensus conclusion of a group of knowledge-
able and unbiased pathologists (KUPs). Those 
individuals would not be engaged by lawyers for 
the plaintiff or defense, but rather by the court in 
general. As such, they would truly constitute a 
“peer” group with regard to the status of the 
defendant. A similar paradigm could apply to all 
malpractice actions concerning any professional 
vocation. Jury pronouncements that departed from 
the consensus “standard” could then be classified 
scientifically as “false-positive” or “false-negative” 
results.

However, pathologists – and physicians in 
general – must acknowledge that the identifica-
tion of legal “test”-malfunction is more compli-
cated than finding problems in medical validity. 
Although the courts do make technical informa-
tion available to jurors, an important basic con-
ceptual difference between the Law and Medicine 
must be realized – it is not the primary goal of the 
tort system to achieve a scientifically correct 
conclusion, but rather to assure the legal and 
social rights of the plaintiff. Because attorneys 
and judges are educated people, they could 
certainly design a system intended to mirror the 
opinions of knowledgeable and unbiased profes-
sional “experts.” Instead, the existing model sim-
ply guarantees the plaintiff a right to bring his or 
her complaint to the court, and to be adjudicated 
by a jury of the plaintiff’s “peers.” As alluded-to 
earlier, such “peers” are not really “equals” of 
defendants in proceedings that concern profes-
sional and scientific issues. That is especially so 
because attorneys actually aim to exclude jurors 
who fit that description.

When a jury trial occurs in the present legal 
schema, sociopolitical aspects of “peer review” 
of the plaintiff’s complaint are generally met but 
scientific ones are not [14]. If one accepts the 
premise that lay jurors will continue to decide 
the results of professional malpractice cases, 
efforts at reforming the system must aim to remove 
personal bias from the  testimony of “experts” and 
assure the validity and strength of their scientific 
credentials. Panels of court-appointed, unbiased 
peer-professionals could also be used to provide 
appropriate counsel to judges.

Trial decisions that differ from the results of 
scientific analyses can be best understood by 
dividing them into two categories – (1) techni-
cally dissonant and politically consonant, and (2) 
technically dissonant and politically dissonant.

Type 1 Jury Errors: Technically 
Dissonant But Politically Consonant

When a type 1 error occurs, the scientific and 
medical information (SMI) provided to jurors 
was accurate and complete, but the jurors were 
unable to understand that information or chose 
to ignore it. For example, they may have based 
their group- decision on “community values” 
(such as feeling sorry for the plaintiff or “liking” 
the defendant). In other words, the jury members 
felt that their decision was the “right” (politi-
cally consonant) thing to do.

This type of error predictably results from 
 lay-person juries having to make decisions on 
problems involving complicated scientific issues, 
or when clinical outcomes produce juror sympathy. 
Efforts to eliminate this category of jury “malfunc-
tion” would require radical changes in the legal 
system, e.g., removing juries completely from 
malpractice litigation by invoking the “complexity 
exemption” in the seventh Amendment to the U.S. 
Constitution [15]. Realistically, such attempts would 
undoubtedly face daunting  political opposition. 
Indeed, there is instead an existing social trend in 
the opposite direction, i.e., challenging opinions 
of the “educated elite” by “democratizing” decisions 
that concern science and technology [16, 17].

It is discouraging to most physicians and 
pathologists in particular when valid SMI is 
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ignored, because our focus is on the validity and 
performance of objective laboratory tests. 
However, we also accept that “wrong” diagnoses 
are unavoidable. For example, if one feels that 
patient welfare is best served by an assay that 
preferentially produces false-positive results, the 
test in question is intentionally designed to favor 
sensitivity over specificity [18].

Even though it is “mixing metaphors,” the court 
consciously weighs “politically-correct” decisions 
against scientifically valid ones. Furthermore, 
because tort law is specifically aimed at achieving 
social–political objectives, the objective scientific 
integrity of its processes can suffer.

Type 2 Jury Errors: Technically 
Dissonant and (Therefore) Politically 
Dissonant

In type 2 errors, at least some SMI provided to 
the jury did not accurately reflect the reality of 
medical practice or scientific fact, and the jury 
apparently relied on that inaccurate testimony to 
reach a final decision. This form of legal dysfunc-
tion is actually amenable to reform.

Accrued evidence supports the idea that most 
citizens value lay-person “peer” juries, inevitably 
making the courts vulnerable to type 1 error 
[19–21]. However, there is no indication that 
people want to be misled scientifically while 
serving as jurors. Hence, one can conclude that 
when inaccurate medical testimony produces a 
verdict that a properly informed jury would not 
have reached, the legal outcome is both techni-
cally flawed and sociopolitically incorrect.

Rights Are Not Equal

Physicians think of laboratory test design in 
terms of precision and accuracy. They accord-
ingly have trouble understanding a “test” ( jury 
trial) that prioritizes a social goal; namely, the 
preservation of the plaintiff’s rights. As a result, 
doctors who are sued usually are incensed if a 
jury reaches a decision that would be contrary to 

that of their medical peers. Indeed, one could 
justifiably argue that the rights of the defendant 
had been violated in that context.

Doctors – being nonlawyers – must recognize 
the fact that individual “rights” can  conflict with 
each other and are pragmatically unequal. The 
courts are focused on deciding which rights take 
precedence over others. The seventh Amendment 
assures any defendant the “right” to have a jury 
of peers in a tort case [22]. Conversely, one has 
no constitutional right to a jury decision that 
matches the opinion of unbiased and optimally 
qualified “experts.” No existing statute or judicial 
decision mandates that professional malpractice 
defendants have a right to be judged by voca-
tional and educational equals.

The rights of citizen jurors can also be com-
promised in the courtroom. In their role as con-
sumers, they benefit from legislation aimed to 
protect against inaccurate information on 
 medications, food, investments, and other tan-
gible life elements [23, 24]. However, as jurors, 
those same people encounter the rights of 
plaintiff’s and defendant’s attorneys to present 
the “strongest possible case,” including the opin-
ions of “experts” for both sides. Lawyers who 
knowingly use “experts” to misinform juries –  
a practice that unfortunately is real – are like 
companies who seek to deceive their consumers 
[25]. Tort reformers feel that the present system 
of “expert” testimony is an anachronism that 
exploits the naivete of lay jurors. Contrarily, 
defenders of the status quo believe that nonpro-
fessional “peer” juries are effective even when 
presented with “junk” expert testimony.

Adversarial “Experts”

Using physicians to explain pathology-related 
issues to juries is certainly preferable to using no 
experts at all, or such “experts” as architects who 
would likely have no familiarity with the topic at 
issue. However, one would be incorrect in assum-
ing that every physician specialist reflects the 
prevailing view of his or her specialty group 
as a whole. Indeed, some “experts” may hold to 
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opinions that are highly idiosyncratic or even bla-
tantly incorrect. Experience attests to the reality 
that a medical education does not protect a person 
against intellectual or ethical failures [26, 27].

It is obvious that the courts do want to know 
what pathologists think, but it is troubling to see 
how that information is sometimes obtained. 
Science holds that in order to draw rational con-
clusions from a sample of any given population, 
the sampling must be done systematically [28]. 
That principle applies to everything from presi-
dential polls to taste-tests of potato chips. One 
cannot simply have opposing factions report 
highly select opinions that favor a certain candi-
date or product. Unfortunately, that basic concept 
does not have traction in the legal world; the right 
of lawyers to find “experts” who support their 
 clients’ positions supersedes the need for accu-
rate SMI in the courtroom. The selection of 
“experts” sometimes even ignores the need for 
specialized training or experience in the pertinent 
topic. Unlike scientific sampling, legal searches 
for “experts” are comparable to “comparison- 
shopping” for predefined items at particular 
prices. Thus, the jury may hear diametrically 
opposed “expert” opinions, effectively forcing 
jurors to rely on factors such as the experts’ cha-
risma or lack thereof [29].

Biased selection of “experts” by lawyers is 
further complicated by the inability of judges to 
weigh and digest SMI and by personal idiosyn-
cracies of jurists that can be prejudicial [30]. In 
fact, attorneys recognize that “…the trial judge is 
hardly a more qualified assessor of scientific 
credibility than the jury itself” [31]. When the 
judge fails as a gatekeeper of accurate informa-
tion, jurors will be faced with apparent uncer-
tainty and disagreement among “experts.” In fact, 
no valid disagreement may exist in the proffered 
SMI, if testimony were to be evaluated by scien-
tifically adept parties instead of by lay persons.

A quantification of the level of flawed SMI in 
the courtroom would be helpful in understanding 
how science affects jurisprudence. However, such 
data are currently unavailable and will probably 
continue to be so. Only the most egregious exam-
ples of fraudulent (? criminal) scientific testimony 

have been exposed in public forums, such as the 
case of a single physician-“expert” who person-
ally certified a diagnosis of asbestosis in >50,000 
cases [32].

Scientific Information and Juries

Although the civil court system values social con-
cerns at least as highly as scientific validity, SMI 
is still a part of malpractice lawsuits. It is ger-
mane to ask whether lay jurors can properly digest 
technical details in cases that involve pathologists 
or other professional defendants. The process of 
teaching the intricacies of pathology to residents-
in-training takes several years beyond medical 
school. Hence, as expected, public records reflect 
the fact that lay juries are often baffled by pathol-
ogists’ testimony. One juror, who was interviewed 
after a trial that included pathologic information 
on coronary arterial thrombosis and myocardial 
infarction, compared the SMI presented in the 
courtroom to the inchoate sounds coming from a 
faceless teacher in a “Charlie Brown” cartoon on 
television [33]. Nevertheless, most lawyers 
continue to aver that “expert” testimony can be 
assimilated successfully by lay jurors. Believing 
assertions such as that may demand substantial 
credulity [34].

It would be relatively easy to convene “mock” 
juries, give them conflicting “expert” medical 
opinions, and test them to see how much scientific 
information had been absorbed correctly. That 
process would provide at least some tangible 
information on the ability of lay people to digest 
SMI. Nonetheless, because the legal system lacks 
even the rudimentary features of an objective, 
evidence-based mechanism, such tests of proce-
dural validity have never been performed. The 
effects of professional inertia and self-interest are 
probably also operative in this problem [35].

Sporadic assertions have been made in the 
legal literature that a “statistically significant” 
correlation exists between jury verdicts and 
“expert” opinions [14]. However, this would 
only show that jurors do not ignore “expert” 
opinion. Moreover, physicians who attempt to 
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improve “expert” testimony in the courtroom 
by publicly challenging the opinions of profes-
sional mavericks are in danger of being sued 
for offenses such as “defamation of character” 
[36]. Sadly, most physicians and medical spe-
cialty organizations have ignored this problem 
altogether [37].

Two Cultures: Lawyers and Doctors

Lawyers and judges control the legal system, and 
it would seem rational for physicians to work 
with these individuals to reduce jury error. 
Unfortunately, the two parties typically adhere to 
irreconcilable paradigms in their evaluation of 
the Law. Physicist and novelist C.P. Snow was 
famous, in part, for his Cambridge University 
lectures in 1959, which noted that science and the 
humanities are populated by people who do not 
understand each other because they live in different 
cultures [38–40]. Similarly, the philosophical gap 
between lawyers and physicians is a sizable one. 
Each group has its own modes of training, spe-
cialized terminologies, professional objectives, 
ways of evaluating the results of their work, and 
forums for publication and discussion of profes-
sional thought. In the main, these are only margin-
ally related to one another. Consequently, several 
observers have noted a “rawness” of physician-
based antipathy toward attorneys, as well as a 
“searing distrust” of the courts [41].

Sadly, effective criticism of the use of 
“experts” who sometimes misinform jurors 
depends to some extent on the inherently weak 
foundation of what is known as “argument by 
incredulity,” that is, my view-point is true 
because I can’t imagine it to be false [42]. 
Physicians may consider it to be simply unac-
ceptable to ever allow the delivery of misinfor-
mation to jurors. In contrast, a critical mass of 
lawyers believes that the opportunity for cross 
examination of “experts,” truthful opposing tes-
timony, and the option to appeal unfavorable 
verdicts effectively compensates for f laws in 
“expert” testimony [43, 44]. Physicians are free 
to consider the latter opinion overtly wrong, but 
that does not prove that physicians are correct.

Medical Error and “Standard  
of Care”

There has been widespread, intense pressure to 
reduce medical error – a laudable goal. With that 
fact as a background, one might assume that the 
tort system could be a valuable asset in prevent-
ing iatrogenic harm to patients.

In principle, that premise could be true; in 
actuality, however, it is not. An allegation of 
medical “negligence” always attends malpractice 
lawsuits, but many plaintiffs’ lawyers try to blur 
the distinction between true negligence – that is, 
the willful or careless commission of a wrongful 
act – and simple human or system-based error, or 
adverse outcomes not due to error. That situation 
stifles any meaningful input from the courts in 
estimating the relative weight of those elements 
as causes of adverse clinical outcome.

In contrast to medical error, which has been 
studied assiduously over the past decade, depar-
ture from “the standard of [medical] care” is a 
vestigial legalism that has only weak links to 
medical error analysis. For example, in the Law, 
it does not matter whether a misdiagnosis 
stemmed from ambient disturbances in the labo-
ratory, technical problems in the histology labo-
ratory, transposition of specimens before receipt 
in the pathology suite, or misinterpretation of the 
disease process by a pathologist. Laboratory 
directors and practicing pathologists are held per-
sonally and globally responsible for all of those 
factors; they are all subsumed by the phrase 
“standard of care.”

Tort cases involving pathologists depend upon 
fellow pathologists’ perception of standard of care 
three potential dispositions;

 1. No expert can be found to assert that a diagno-
sis or interpretation fell below the “standard of 
care,” and the plaintiff has no case

 2. The mistake is blatantly the result of substan-
dard practices or professional incompetence, 
as judged by unbiased peer-evaluators, and no 
expert can be found who will testify in favor 
of the pathologist. The particular details of the 
error are important only in regard to the award 
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of damages. The error is so blatant that prin-
ciples of prevention analysis do not apply

 3. “Expert” opinions differ over whether there 
was a negligent departure from the “standard 
of care.” If the case is not removed from the 
system by settlement or summary judgment, 
the conflicting “experts” will address a jury in 
court. The jury will have to decide which expert 
opinion reflects practice reality, and then how 
to integrate this conclusion into a final verdict.
The most valuable information on medical 

error coming from the courts has been collected 
by insurance companies, not lawyers, and ana-
lyzed by other physicians [45]. However, such 
data are very incomplete, because many malprac-
tice cases are settled under private terms [46], 
and details of jury deliberations are not often 
made available as public information.

Plaintiffs’ attorneys aver that they are “fighting 
medical error” by threatening tort actions against 
physicians who deliver substandard care [47]. 
Nonetheless, no credible objective proof has 
appeared showing that this approach does produce 
improvement in medical practice or patient wel-
fare. Undeniably, however, it does measurably 
discourage doctors from practicing in geographic 
locales where torts are rife. In addition, it has been 
proven beyond doubt that perceived malpractice 
risks prompt physicians to over-order tests, medi-
cations, and procedures in a defensive posture, 
elevating the cost and complexity of medical care 
[48]. The vacuous concept called “standard of 
care” leads doctors to think increasingly about 
how lay jurors might respond to each of the many 
professional decisions that comprise patient care 
[49]. Typically, that type of rumination is scien-
tifically unproductive, expensive for the medical 
system, and inefficient.

Is the Professional “Standard  
of Care” a Valid Concept?

At their extremes, the ideas underlying “standard 
of care” are straightforward. Everything in-
between is a muddle.

One can attempt to resolve this confusion by 
consulting a legal dictionary, which says that the 
“standard of [professional] care” is “the average 
degree of skill, care, and diligence exercised by 
members of the same profession, practicing in 
the same or a similar locality, in light of the 
 present state of… science” [50]. That definition 
is inherently nebulous. In the same dictionary, 
“average” is defined as “ordinary” or “usual.” 
A meaningful understanding of those words, in 
turn, requires additional information:

 1. Data would have to be gathered on the perfor-
mance of a representative sample of qualified 
“local” professionals in a given vocation, 
regarding the type of case under discussion, plus

 2. A reproducible and logical threshold would 
need to be established to separate “ordinary” 
from “non-ordinary” performance.

As an example, one might find that unbiased 
evaluation of a melanocytic lesion by several 
experienced “local” pathologists resulted in the 
following diagnoses – Spitz nevus (25%); 
melanoma (72%); and other lesions (3%). With 
this information in hand, one could attempt to 
identify professional conclusions that were 
“substandard.” The process might result in the 
conclusion that a minority opinion (in this example, 
“Spitz nevus”) did still comport with the “stan-
dard of care” [51]. That is particularly true if the 
recommended treatment attached to the latter 
interpretation did not differ substantially from 
that used for the preeminent diagnosis. However, 
the question remains: Is the diagnosis of spitz 
nevus “average”?

Another challenge to “average” or “ordinary” 
skill is its unclear relationship to subspecialty 
training or certification. Indeed, when the latter 
is required, the advanced certificate-holder 
would, by definition, be “special” and not “ordi-
nary!” Furthermore, the threshold of “ordinary 
practice” is not a constant of nature such as the 
speed of light, and it cannot be identified with 
precision. In the existing legal system, “ordi-
nary” and “non-ordinary” are completely 
changeable terms, definitions of which could be 
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chosen arbitrarily to favor a plaintiff, a defen-
dant, or neither party.

As the percentage of pathologists who 
agree with a given diagnosis becomes lower, 
the corresponding claim to “ordinariness” 
becomes less credible. On the other hand, it 
might theoretically be decided that “ordinary” 
skill was defined by agreement among ³95% of 
reviewing pathologists; that high threshold 
would inherently produce cases with no stan-
dard of care.

Yet another approach to the “ordinary vs. non-
ordinary” issue would be to define the most 
 commonly made diagnosis as the proper  “standard 
of care,” and all others as “non-ordinary.” That 
model would be regarded as highly illogical and 
flawed by persons with a scientific background, 
because the majority of observers can agree on a 
decision or interpretation that is entirely wrong 
on objective grounds. Nonetheless, most lay per-
sons are accustomed to separating “winners” 
from “losers” through majority voting. A review 
of US Supreme Court decisions shows that 5 to 4 
votes are relatively common, but the majority is 
clearly determinative [52]. On the other hand, 
majority scientific opinion has definite conse-
quences, but it does not change scientific reality. 
Even if most scientists in the world decided to 
again assert that the earth was flat, it would still, 
in truth, be spherical.

Some experienced pathologists who partici-
pate in malpractice litigation use self-determined 
thresholds to identify cases in which they cannot 
support a defendant as complying with “standard 
of care” [53]. If, for example, it is concluded  
that the defendant pathologist has erred, but at 
least 20% of all pathologists would have made 
the same error, an expert could decide to support 
the actions of the defendant physician. To date, 
however, a testable rationale for that approach 
has not been advanced, nor is there any pub-
lished proof that a valid method exists for deter-
mining how many pathologists would make a 
certain error. Nevertheless, these issues must be 
discussed if “standard of care” is to move from 
the shadows into the realm of evidence-based 
error analysis.

Applying “Standard of Care”  
to Features of a Given Case

There is no current administrative legal mecha-
nism for routinely providing judges and juries 
with information from court-appointed and unbi-
ased “experts.” Also, as just discussed, defini-
tions of “ordinary” and “non-ordinary” practice 
are ethereal.

Peer-reviewed medical publications may proffer 
general conclusions on diagnostic  accuracy and 
precision, and one might further assume that 
such information could be used legally to define 
“standard of practice.” For example, published 
information is available concerning the rate of 
false-negative interpretation of Papanicolaou 
(Pap) tests that actually show invasive cervical 
squamous carcinoma [54]. Nonetheless, those 
data can be completely  irrelevant to allegations of 
malpractice in a  specific single case of “missed 
cancer” using the Pap smear. That is because 
morphologic findings in a specific case at issue may 
be (and often are) markedly different from those 
on which published conclusions were drawn.

The Law invokes the “expert” paradigm to 
explain how the complex literature should be 
applied to the case at hand. Theoretically, the 
“experts” give their views of how the handling of 
a particular case complied with real-life “stan-
dard” practice, and their conflicting conclusions 
are, in a legal sense, each supposed to be dis-
positive. However, that construction is ultimately 
invalid. First of all, none of the “experts” were 
present in the specific hospital or laboratory on 
the day a diagnosis was made, and they typi-
cally have no detailed knowledge of the circum-
stances under which the case was evaluated [55]. 
For example, verbal interchanges of information 
between pathologists and clinicians are extremely 
common and very important to patient care, but 
memories of such communications can be lost or 
altered with the passage of time if they are not 
written down in the medical record. The latter 
fact by no means detracts from the weight they 
carried in the “here and now.” Finally hindsight 
bias can be almost impossible to eliminate.
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Credibility of “Expert” Witnesses

Jurors weigh many factors when coming to their 
conclusion. In criminal trials, juries have some-
times delivered a verdict of “innocent” when it is 
obvious that the law has, in fact, been breached 
[56, 57]. In those instances, one might view the 
process as defensible because the juries wished 
to bring their community-based standards to bear 
against laws that they collectively felt to be 
unjust. With regard to medical malpractice cases, 
juries also have determinative latitude. They may 
base a judgment on the opinion of one “expert,” 
attempt to integrate the assertions of several 
“experts,” or ignore all of them. However, in 
actual practice, the impact of “expert” testimony 
on the jury depends on now jurors perceive its 
credibility, which, of course, derives from jurors 
perceptions of the people who are offering it [58].

Credibility or “worthiness of belief ” is so 
important that it deserves further evaluation. If 
trial topics are mainstream and the jury is famil-
iar with them, “credible” testimony must simply 
meet the test of plausibility. For example, if a 
witness insists that he saw an accused murderer 
from a mile away in a dark street on a cloudy 
night, the jurors’ experience and common sense 
would tell them otherwise. On the other hand, 
most lay persons charged with assessing the 
credibility of “expert” testimony in pathology 
have no familiarity with that topic. They usually 
search for surrogate indicators of believability, 
such as the manner of speech and choice of 
words, style of dress and grooming, respect for 
the jurors and other people in court, and the per-
ceived strength of the professional credentials of 
the witness [59].

Problematically, the credibility of an “expert” 
might be unquestioned in the eyes of a lay jury, 
whereas medical–scientific authorities would 
universally judge him or her to be a charlatan. The 
problem of “pseudo-credible” testimony has, in 
the past, led to some trial outcomes which departed 
markedly from those that established SMI would 
have dictated. This situation threatened the courts 
with a loss of face and public confidence in the 

past, and the Supreme Court felt compelled to 
attempt remedial action in an attempt to salvage 
the credibility of the legal system [60].

The Daubert Case and Standard  
of Care

During the 1990s, the US Supreme Court issued 
several rulings which provided new criteria that 
judges could apply in performing their “gate-
keeper” function regarding “expert” testimony 
[60–64]. However, one would be mistaken in 
believing that these rulings are relevant to most 
current tort cases that involve pathologist defen-
dants [65, 66]. Nevertheless, there are exceptions 
to that statement. If an “expert” were to assert at 
deposition that a single physiological mitosis in a 
melanocytic skin lesion mandated a diagnosis of 
melanoma on its own weight, that opinion could 
not  possibly be supported by the peer-reviewed 
 literature – a requirement stemming from the 
case of Daubert v. Merrell-Dow Pharmaceuticals 
([92-102], 509 US 579 [1993]). In some jurisdic-
tions, opposing council would have the option to 
file a “Daubert challenge” to the testimony. If 
after reviewing the testimony the case’s judge 
agreed that the testimony was “junk,” there would 
be no need for the attorney filing the challenge to 
discredit that particular testimony at trial because 
the testimony would be barred from the court-
room by the judge.

Sadly, that scenario is an idealized one. In 
real life, things are more complicated. 
Obfuscating arguments can easily be presented 
to muddy the medicolegal water over admissi-
bility of “expert” testimony, especially if no lit-
erature exists that exactly describes the particular 
case in question. Thus, the “Daubert criteria” 
are functionally irrelevant in many instances 
where “expert” testimony is not “expert.” The 
question for the court is not whether the cited 
literature is valid, or whether it is applicable, 
but rather whether the subjective interpretations 
of that information by the respective “experts” 
are valid [62].
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With regard to subjective expert opinion, most 
judges who oversee the admissibility of “expert” 
medical testimony could only function properly, 
in a scientific sense, if they sought the advice of 
unbiased court-appointed authorities. How ever, 
there are no mandates, or even procedural provi-
sions, for judges to seek such help, and medical 
organizations have not offered it to the court 
spontaneously. Rather than admitting that they 
are personally unable to evaluate the probative 
value of scientific-medical testimony, most judges 
use existing statutes and decisions concerning 
“expert” witnesses to provide a “preference for 
admissibility” [67]. Jurors who may have less 
education than judges are then required to deter-
mine the scientific veracity of testimony that is 
the “admissible truth” rather than the “whole 
truth” [68].

“Finality” in the Courts vs. “Finality” 
in Medicine

In addition to bringing values of the community 
into the legal system, jurors are also charged with 
ending conflicts between the specific parties at the 
bar. This process is complicated when credible 
“experts” disagree, when both the plaintiff and 
the defendant(s) seem to be worthy people, and 
when the opposing lawyers present their cases 
skillfully. Perhaps the testimony of the “experts” 
indicates that there is genuine  disagreement over 
the crux of the case, but the ultimate scientific 
validity is not the dominent issue at that moment 
in time; the needs of the court to resolve the issue 
before it are more concrete.

Physicians may be offended by this perceived 
“rush to judgment” in the face of factual uncer-
tainty. Artificial legal “finality” may be contrary 
to the general principles of science and medicine. 
Indeed, when one sees dogmatism in the face of 
uncertain or conflicting objective data, it can 
 generally be surmised that one is dealing with an 
ingenue or a fraud as a witness.

However, even in the real world of patient care, 
uncertainty must coexist to some extent with final-
ity. In pathology practice, a low level of disquietude 
in difficult cases is relatively common, but substan-

tial uncertainty typically stimulates a consultation 
with medical colleagues. Those helpers may trans-
form what are inherently ambiguous findings into 
a final diagnosis and plan of action. Similarly, the 
decisions of juries function to transform medical 
and legal uncertainties into finalities.

Conclusions

In their role as diagnosticians, pathologists must 
be able to identify and respond to areas of uncer-
tainty. An evidence-based approach to scientific 
investigation and medical practice is thought to 
optimize the specialty’s approach to uncertainty. 
The legal system also must resolve uncertainty, 
but in many cases, physicians consider the uncer-
tainty surrounding malpractice cases to be arti-
facts arising out of the scientific weaknesses of 
the legal system’s procedures.

Physicians are one in the view that better 
 scientific presentation in the courtroom is a laud-
able goal. Moreover, at least some judges would 
like to improve the quality of SMI offered to lay 
juries. However, efforts aimed at closing the space 
between admissible testimony and scientific truth 
have lacked  infrastructural support, and attempts 
to exclude “outlier” testimony have been largely 
ineffective [67, 69].

Some medical groups such as the American 
Association of Neurological Surgeons and the 
American Association of Radiologists have 
attempted to improve the quality of “expert” 
testimony by doing their own peer reviews and 
imposing sanctions on physicians whose testi-
mony was obviously erroneous [70]. Those 
efforts are commendable, and they have helped 
to identify failures of the legal system to control 
defective “expert” input. Nevertheless, this 
approach is clearly not the only answer to the 
problem. Until all judges and medical specialty 
societies  cooperate closely to assure the accu-
racy of “expert” presentations in the courtroom, 
the legal system will continue to depend on 
jurors to separate fact from fiction.

Interestingly, the introduction of DNA-based 
technology into criminal trials has prompted the 
legal profession itself to question the quality of 



34720 Evidence-Based Pathology and Tort Law

other forensic evidence that traditionally had 
been considered to have very high credibility 
[71]. However, there is currently no indication 
that the lawyers who control malpractice litiga-
tion have identified any reason to re-evaluate 
their systems or methods. This legal satisfaction 
with the status quo can be discouraging to patho-
logists who have had first-hand experience with 
malpractice litigation, but should not prevent 
individual pathologists from taking their own 
small steps to improve the scientific quality of 
malpractice litigation. First, one must be willing 
to commit the time and emotional energy required 
to participate in malpractice litigation as an 
expert, rather than just complain from the side-
lines about tort system deficiencies. As patholo-
gist Richard J. Zarbo observed, “the system only 
works when good people get involved.” Secondly, 
the pathologist must commit to providing honest, 
clear, credible, and evidence-based testimony. At 
that point the pathologist has become a one 
person force for tort reform.
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A
ACCE test evaluation

analytic validity
assay robustness, 299
defined, 299
integral elements, 299
proficiency testing (PT), 299
quality control, 299

clinical utility
assay and interventions, 301
economic evaluation, 301
meta-analysis, 301

EGAPP, effort, 298
evidence evaluation, 298–299
formal assessment, 301–302
formulation, 298
genetic testing applications, 298
literature review, 298
molecular tests, 299–300
pilot studies, 302
sensitivity and predictive value

HFE and DMD gene, 300
true-negative (TN) and false-positive (FP),  

300
ACS. See Acute coronary syndromes
Acute coronary syndromes (ACS), 308–310
American Recovery and Reinvestment Act (ARRA), 

305, 319
Analysis of variance (AOV), 49–50
Anatomic pathology, decision support systems.  

See Decision support systems
Anatomic pathology, prognostication and prediction

axillary lymph nodes, 61–62
biological molecules, 62
goals, 62
histological grading, 61
hospice-care, 65
mammary carcinoma model

clinical bias, “prognostic” markers, 80–81
cross-validation methods, omitting, 79–80
heterogeneous data types, 75
histologic grading, 71–72
incorrect categorical and binary data generation, 

76–78

lymph node status, 72–74
MC (see McGuire criteria, prognostic test  

evaluation)
methodological reproducibility and cross-validation, 

78–79
prevalence, 66
prognosis forecasting, patients, 66
prognostic analytes, 75
surrogate, formal lymph node, 74–75
tissue sampling, 66–67
tumor size measurement, 70–71
usual ductal adenocarcinoma (UDA), 65
variants, histologic, 67–70

personalized medicine
cost, health care, 64
federal politicians, 65
health care spending, 64
human genome, 63
PPMT (see Prognostic/predictive medical test)
technological medical entrepreneurs,  

64–65
U.S. Congressional Budget Office, 65

queries, illness, 61
risks

negative events/hazards, 62
term meaning, 62
uncertainty, 62–63

TNM system, 61
vicissitudes, health care, 65

Annotated dendrogram fingerprint (ADF), 101
AOV. See Analysis of variance
Applied immunohistochemistry

diagnostic (see Diagnostic immunohistochemistry)
EBM (see Evidence-based medicine (EBM))
PPIHC (see Prognostic-predictive  

immunohistochemistry)
ARRA. See American Recovery and Reinvestment Act
Avidin-biotin-peroxidase complex (ABC), 265

B
BAC. See Bronchioloalveolar carcinoma
Bayes theorem/rule, 43
BDNF. See Brain-derived neurotrophic factor

Index
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Best evidence, pathology
case control study differentiation, 38
clinical correlation, 39
comprehensive tables, 36
definition, 28
evaluation, 32
“evidence pyramid”

description, 32
graphical representation, 33
human-based endeavors, 33
pathologic entity, 33

external validity
definition, 32
evaluation, evidence quality, 32

generation, study type, 35–36
internal validity, 28–29
linguistic/legal environment, 27
meta-regression analysis

clinical decision, 35
significance evaluation, 34
“wobble”, 34

modern evidentiary rules, 28
pathologist

case series and study, 38
expert opinion, 38

pathology literature, 36
pertaining diagnosis, 37
quality evaluation, 28
real-life constraints, 28
research applications, 37
ROC

inaccurate assessments, 31
phosphorescence, oscilloscope, 31

rule, 28
squamous differentiation, 38
statistics, data analysis, 29–31
stringent requirements, 38
study designs

quality ranking, 32
systematic review and meta analysis,  

33–35
subgroup analysis, 34

Biostatistics 101
analysis of variance (AOV), 46, 49–50
Bayes theorem/rule, 43
chi-square test

degrees of freedom, 47
equality test, 47
Mantel-Haenszel, 48
McNemar variant, 47
positive vs. negative, 46–47
probabilities, 47
statistical independence, 48

conditional probabilities, 42
hypothesis testing, statistical,  

45–46
probability, 41
random variables

distribution function, 45
independent samples, 45

parametric tests, 48–49
probability distributions, 43–45

regression analyses, 50–55
ROC curves, 42–43
statistical independence, 42
survival analysis

binary failure event, 55
Cox model, 58–59
hazard function, 57
log-rank test, 56–57
PSA serum value, 55
survival plot, 55–56

t test, 48
type II errors, statistical power and sample  

sizes, 46
Wilcoxon and Kruskal–Wallis tests, 50

Biostatistics, evidence-based medicine. See Biostatistics 
101

Bloom–Scarff–Richardson (BSR) grading method
modified BSR (MBSR), 72
UDA, grade II, 79, 80

Brain-derived neurotrophic factor (BDNF), 144
Breast cancer, prognostication model

clinical bias, “prognostic” markers, 80–81
CVM, 79–80
heterogeneous data types, 75
histologic grading, invasive breast carcinoma

BSR method, 71
MBSR, 72
nosological tumor types, 72

histologic variants
group I and II, 67
group III, 68–70

incorrect categorical and binary data generation, 
76–78

lymph node status
aggressive axillary lymphadenectomy, 73
host immunity, 74
implants, 73
isolated tumor cells, 74
neoplastic implants, 74
scirrhous breast cancers, 72
sentinel node technique, 74

MC (see McGuire criteria (MC), prognostic test 
evaluation)

mutations/amplifications, 75
reproducibility and cross-validation

immunostaining, nuclear p53-reactivity,  
78, 79

southern blot preparation, 79
substaging surrogate, lymph node, 74–75
tissue sampling, prognostication and prediction

biopsy needles, 66
spatial heterogeneity, 67

tumor size measurement, 70–71
Bronchioloalveolar carcinoma (BAC)

adenocarcinoma, 220
pulmonary, 221

BSR grading method. See Bloom–Scarff–Richardson 
(BSR) grading method
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C
CART. See Classification and regression tree analysis
Case-based reasoning (CBR)

classification and identification, 184
k-nearest neighbor (kNN) search, 184–185
population based studies, 184
prognostic support systems, 184

CBR. See Case-based reasoning
CDSSs. See Clinical decision support systems
Cedar Sinai Medical Center experience, evidence based 

diagnostic criteria. See Evidence-based diag-
nostic criteria, Cedar Sinai Medical Center

Cell pathology. See Evidence-based cell pathology
CER. See Comparative effectiveness research
Classification, anatomic pathology. See also  

Classification and diagnosis principles,  
anatomic pathology

EBM, 95–96
elements, 95
foundational problems, 96
oncopathological taxonomic models, 104
pluralism, 103
populations, 96
scientific and managerial, lesion

canonical, 97
histogenetic (HG), 97

Classification and diagnosis principles, anatomic  
pathology

boyd kinds
K

Neop
 synovial sarcoma, 114

natural kinds, 115
SYT-SSX fusion product, 114

EBP
CBR, 96
EBM, 95–96
foundational problems, 96
populations, 96
statistical reasoning, 96

elements, 95
HG-K

Neop
’s (see Histogenetic neoplastic kinds)

human element
fine-grained taxonomic instability, 114
macro-revisions, 110–113
oncopathological reality, 110
translation and transmission, 113–114

individual neoplasm (see Individual neoplasm  
(I

Neop
))

intrinsic heterogeneity, (K
Neop

’s)
classification pluralism, 103
phenospace, 103

lack of expertise and incomplete information, 97
myths

essentialism, 115
eventual disappearance, 117–118
monism, 116
naïve realism, 115
problem cases, 117–118

problem cases
de jour classification, 96
ExtnI-CoPeTI structure, 108–109

in-between, hybrid and novel, 96–97
INJS conditions, 109–110
managerial gradient, 108
M-K

Neop
’s (see Managerial neoplastic kinds)

persistence, 97–98
stylized ADF, 109

scientific and managerial classifications, lesion
canonical, 97
histogenetic, 97

Classification and regression tree analysis (CART),  
124, 129

Clinical decision support systems (CDSSs)
alerts, frequency distribution, 330, 331
antiepileptic drug monitoring, 326
benefits, 331, 332
corollary orders, 331
cost benefits, 330–331
critical test results, 330
digoxin levels appropriateness

inpatient and outpatient, 328
serum, 327–328
timing, 326–327

implementation, 324
laboratory test utilization

CPOE, 324
overridden, justification, 325
redundant testsa reduction, 325–326

PSA (see Prostate-specific antigen)
strategies, 323–324
test charges display

CPOE, 329
inpatients, 329–330

user-friendly and end users feedback, 331
Comparative effectiveness research (CER)

EBM, 23, 24
research, 23

Complexity, neoplasm classification
ADF, 101
clones, 100
I

Neop
 vieId, 99

levels, 98
phenotypic plasticity, 100
single cancer genes, 98
symbolism, 101
synchronic and diachronic intra-tumor  

heterogeneity, 99
tumor progression models and lineages, 100

Computerized alerts and reminders
EHR, 317
electronic disease management protocols,  

317–318
PT-INR, 317

Computerized physician order entry (CPOE)
CDSSs, 323–324
implementation, 323, 331
utilization reminders, clinical decision making, 324

Conditional probabilities
Bayes’ theorem, 308
likelihood ratio, 42
relative risk, 42
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Consultative interpretive services
hemoglobin electrophoresis, 313
hospital laboratories, 316
immunoassays, 314
normal antithrombin III, 314, 315
order-entry systems, 315
protein S deficiency, 313
PTT evaluation, 315, 316
“ristocetin cofactor”, 315–316
von Willebrand factor, 313, 315
warfarin, 314–315

Cox model
hazard score formation

graphical nomogram, 59
men, hormone refractory prostate cancer, 59

multiplicative factor, 58–59
PSA serum, performance, 58
semiparametric, 58
survival time, 58

Cross-validation of methods (CVM)
description, 78
omitting

immunostaining, 80
p53 immunostain and mutations, 80
seroma, 80
UDA, BSR grade II, 79–80

D
DA. See Decision analysis
Data collection, pathology

elements, 247
evidence, 249
histologic classification, WHO, 247–248
meta analysis, 246–247
protein expression, 247
secondary data, 247

Decision analysis (DA)
Bayesian updating, 179
burgeoning oncopathological zoo

molecular kinds, 178
named entities, 178

client decision, 177
clinician’s lament, 175–176
cost functions

complex atypical hyperplasia, 181
optimal threshold, 181
treatment recommendations, 181

elements, 174
guiding principles

benign and malignant K
Neop

, 178
phenotype, 178

independence, informational evaluations, 179
intuitions, diagnostic pathology

distinction, 176
HG-K

Neop
s, 176

patient’s clinical management, 176
irresolvable uncertainty, diagnosis

claimed differences and credible evidence, 182
debulking, 182
problem cases, 182

judgmental psychology, 183
mathematical probability interpretations

frequency, 175
subjectivists/personalists, 175

novel case and closest fit, 182–183
principles

good decisions and outcomes, 177
uncertainty, 177

rubber band paradox, 182
sensitivity analysis, 179–180
subjective expected utility (SEU) theory, 174
subjective probability, 173
vagueness vs. probabilistic uncertainty

clarity test, 175
Fuzzy theory, 175
lottery metaphor, 174

value, information
clinical/radiological, 179
discriminating tests, order, 179
resection specimen, 179

Decision support
ARRA legislation

“closed-loop” system, 319
EHR, 319
long track record, 320

commandments, 311
computer based

automatic prompts, 318
forms, 316
online sources, 317

diagnostic algorithms
celiac disease, 312
reflex testing strategy, 312
test utilization control, 311

EBM, 310
off-the-shelf, 319
order form design

laboratory information system (LIS), 311
requisition design, 311

selection and interpretation tools, 310
Decision support systems (DSS)

case-based reasoning (CBR), 183
classifiers, 174
computerized, 207
description, 173–174
rule-based expert systems, 3

Diagnostic immunohistochemistry (DIHC)
ABC procedure, 265
antibody titration, 267–268
antikeratin antibody, 266
avidin-biotin-peroxidase complex method, 265–266
chromophore, 262
cross-validating techniques, 268
development, 263
diagnostic importance, 265
direct immunofluorescence method, 262
ecumenical alternative technique, 264
effective immunohistological procedure, 263
electron donors and recipients, 263–264
evidence-based medicine principles

diagnostic interest, 269–270
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histopathologic diagnosis, 272
ILCs, 271
medical decision-making techniques, 270
morphological diagnostic impressions, 270
reproducible practical tool, 269
surgical pathologists and cytopathologists, 269

fixation-induced coupling, 267
fluorescent immunohistology, 262
formalin fixation, 266
formalin-fixed tissue, 264–265
light-microscopic preparation, 264
Mannich reactions, proteins, 267
medical publications, 268
metastatic melanoma, 265
multitumor tissue blocks, 268
peroxidase-antiperoxidase method, 263–264
quality control methods

biomarkers, 268
chronological validation, 268
intra-and inter-laboratory reproducibility, 268
procedural and extramural validation, 268
reactive and non-reactive tissues, 268
reagent selection and interpretation, 268

renal cell carcinoma, 267
signal maximization center, 266
standardization, 267
TEM, 263
use and abuse, 272–275
working environment, 268

Diagnostic pathology
EBM tenets, 19–20, 23
knowledge accumulation, 20
traditional vs. EBM practice, 23

Diagnostic principle, anatomic pathology. See also  
Classification and diagnosis principles,  
anatomic pathology

description, 103
EBM, 95–96

Diagnostic systems, 184–185
Diagnostic test accuracy

meta-analyses
intercept, model, 165
logarithmic transformation, 165
odds ratio, 164
ROC curve, 165
sensitivity and specificity, 163
true-positive and false-positive proportion, 164–165

RCTs, 151
sensitivity and specificity, 151

E
EBM. See Evidence-based medicine
EBP. See Evidence-based pathology
Effect sizes

estimation, 256
fixed models, 251
mathematical formula, 248
meta-analysis, 256
random model, 248, 251

EGFR. See Epidermal growth factor receptor
EHR. See Electronic health records
Electronic health records (EHR), 305, 317, 319
Electronic reminders, 325
Epidemiology, study results. See Meta-analysis,  

therapies evaluation
Epidermal growth factor receptor (EGFR), 254
Estrogen/progesterone receptor proteins (ERP/PRP),  

69, 70, 76, 82
Evaluating information, pathology. See Pathology  

literature evaluation
Evaluation of diagnostic errors, pathology

classification, 236
communication lack

causes and remedies/solution, 237–238
electronic medical records, 238–239

complexity, 239
criteria and staging, 241
hierarchical culture, 242
human intervention, 240–241
inconsistency

diagnostic criteria, 239–240
evidence-based and time-tested principles, 240

reduction, 235–236
test cycle phases

analytic, 237
postanalytic, 237
preanalytic, 236–237

time constraints, 242
Evaluation of genomic applications in practice and 

prevention (EGAPP) evaluation. See ACCE 
test evaluation

Evaluation, oncopathological studies
bias

definition, 129
referral and spectrum, 129
short follow-up, 129

communicative component
cytological atypia, 131
failure, 132
translation and transmission, 131–132

confounding factors, 130
external validity, 130
genomics

bias/variance dilemma, 135
“bottom-up” and candidate-gene approach, 134
context dependency, neoplastic cell, 133
education, 134
epistemological concerns, 136–138
evidence-based pathology, 138
“forensic statistics” analysis, 132
I

Neop
 heterogeneity and evolution, 133

markers, 138
mathematical-statistical issues, HDB, 134–136
microarrays, 132
noisy data, 138
observation studies vs. experimental studies, 133–134
peer-reviewed studies, 133–134

managerial class, 122
missing data, 129
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Evaluation, oncopathological studies (Continued)
multivariate continuum, 122
multivariate statistical methods

exploratory data analysis, 123
ovarian serous low malignant potential tumor, 126
uterine smooth muscle charts, 123, 124

predictive components
anatomic surgical pathology, 123
clinical prognostic models, 124
GEA, 124
study design, 127

sampling issue
atypical polypoid adenomyofibroma study, 128
CART, 129
multiple hypotheses, 127
overfitting, 128
phenospace, 126
statistical hypothesis model, 126, 128
type I and II errors, 129
validation, 129
Venn diagrams, 127

supervised and unsupervised classification models
managerial/nonmanagerial distinction, 122
“natural” clustering, 123
training set, 123

validity
chance issues, 121
internal, 121
role, chance, 126

Evidence-based CDSSs. See Clinical decision support 
systems

Evidence-based cell pathology
morphological diagnosis

relevance, 208–209
reproducibility, 207–208

report communication, 209–210
sampling

chronic viral hepatitis, 206
colorectal cancer (CRC), 204
extramural vascular invasion, 205
liver biopsy, portal tracts, 206
lymph nodes (LN), 205
malignancy, 204
mathematical modeling, 205
METAVIR scoring system, 206
retrospective analysis, 205
sentinel nodes, 206
serial sectioning, 204
standardized protocols, 206
tumor pathology, 205
whole-specimen mounting, 204

Evidence-based diagnostic criteria, Cedar Sinai Medical 
Center

anatomic pathology
diagnostic classification schema, 227
neoplasms, 226
thymic epithelial neoplasms, 227
type B thymomas, 227

appraisal and integration
anatomic pathology, 226–228

classification schema, 226
probable quality, 225

Bayesian inference
Bayes’ theorem, 218
prior and posterior probabilities, 218–219
process, 219
utilization, 219

cost effective immunohistochemistry
antibody use, 222, 223
OR analysis, 222–223
post-test odds, 223, 224
sensitivity and specificity, 222

data trumps eminence and tradition
EBM, 215
EBP, 215

EBP, 213
experimental design studies, 217
field testing

comedonecrosis, 231
metastastic breast cancer, 230
QDMBA paradigm, 230

forecasting models, 225
formulating well-designed questions,  

214–215
molecular classifications, multivariate data

DNA methylation, 224
linear discriminant analysis and neural networks, 

224–225
test cases, 225

molecular pathology
FDA, 224
image analysis systems, 223–224

pathologists, 214
patient-centered problems

“foreground” and “background” questions, 214
pathologists, 214

probabilities, odds and various ratios use
BAC vs. well-differentiated adenocarcinomas, 220
diagnostic criteria, 219
histopathologic features, 220, 221
LR+, 221–222
RR and OR, 221
statistically significant diagnostic features analysis, 

220–221
prognostic information

clinico-pathologic entities, 229
UIP and NSIP, 229–230

QDMBA paradigm, 213–214
size estimations and power analysis, 218
stages I and II thymoma, 216–217
thymomas studies, 215
tumors classification, 215–216

Evidence-based immunohistochemistry
DIHC (see Diagnostic immunohistochemistry)
PPIHC (see Prognostic-predictive  

immunohistochemistry)
Evidence-based medicine (EBM)

aberrant immunoreactivity, 272
adverse events, 305
antidote to anecdote, 95–96
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Bayesian approach, data analysis
prior probability, 10–11
training/testing sets, 11

“best evidence” incorporation
evidence guidelines integration, 12–13
quality evaluation, medical literature, 12

CDSSs (see Clinical decision support systems)
cellular monomorphism, 271
clinical guidelines, 4
contemporary practice, 305
decision making, 3, 5
definition, 3
detractors, 96
diagnostic interest, 269–270
effectiveness and efficiency, evaluation, 13
elements, 270
eminence-based medicine, 215
environment

If-Then, logic, 4
medical practice, 3
“outcomes research”, 4
randomized clinical trials (RCT), 4

evolution, discipline
EBG, 4
report/technology assessment, 4

formulation and treatment, clinical problem, 5–6
histopathologic diagnosis, 272
ILCs, 271
information, scientific literature

best-evidence summaries, 7, 8
data mining, language texts, 8
Google Scholar, 6
MEDLINE/PubMed database, 6
scientific references, retrieval, 6–7

inter-observer variability
kappa statistics, 11
reexcision, 12
reproducibility, classification schema, 11
specimen-derived data, 12

medical decision-making techniques, 270
medical information, use, 5
morphological diagnostic impressions, 270
participatory medicine, 23
pathology

ADASP, 14
assurance/improvement, quality, 13
“authoritative” interpretation, 14
cancers, asymptomatic patients, 24
CEBM, 36
comprehensive tables, existence, 36
consensus conferences, 14
“cookbook medicine”, 23
EBG development, 15
meta-analysis, 33–34
patient care, 24–25
quality evaluation, 28–32
rigors, higher tiers, 38
steps, practitioner, 24
TNM system, 13–14
traditional style vs. practice style, 23–24

patient care coordination, 306
reproducible practical tool, 269
statistical reasoning, 96
statistical significance, type I and II errors

likelihood ratio (LR), 10
null hypothesis, 8, 10
power analysis, 10
type II error, 10

surgical pathologists and cytopathologists, 269
teaching, 4–5
use and validity, clinical practice

Bayesian approach, 10–11
inter-observer variability, 11–12
statistical significance, 8–12

Evidence-based pathology (EBP)
adversarial experts

biased selection, 341
experts, 340
sampling, 341

CBR, 96
cell, Evidence–based cell pathology
clinico-pathological-correlation, 19
credibility, “expert” witnesses, 345
Daubert case

“gate-keeper” function, 345
obfuscating arguments, 345
unbiased court-appointed authorities, 346

diagnostic errors (see Evaluation of diagnostic errors, 
pathology)

diagnostic pathology, 19–20
DIHC, 269
EBM

epidemiology, 19
participatory medicine, 23
pathology, 23–25

“experts”, 338
finality, courts vs. medicine, 346
guide to readers

knowledge, 190
peer review system, 190

histopathologic features, 272
judgmental psychology, 183
lawyers and doctors, 342
legal system (see Tort law, medicine)
malpractice cases, 337–338
medical error and standard of care

negligence, 342
potential dispositions, 342–343
tort actions, 343

molecular pathology (see Molecular pathology)
peer-reviewed medical publications, 344
population, 96
precision to efficient medicine

CER, 23
cost, medical resources, 22
specificity and sensitivity, 22

principles, 273
prognostic classification rule, 138
QDMBA, 213
“repackaging”, information, 189
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Evidence-based pathology (EBP) (Continued)
reshaping forces

EBM core, 20
immunohistochemistry (IHC), 21
laboratory medicine, 20–21
molecular medicine, 21
“quantitative functional histopathology”, 22
signal transduction pathway, 21
translational engineering and intelligence,  

21–22
rights, 340
scientific information and juries

mock juries, 341
social concerns, 341
sporadic assertions, 341–342

socio-economical context, 20
statistical reasoning, 96
tort law (see Tort law, medicine)
validity, standard of care

“average”/“ordinary” skill, 343
ordinary vs. non-ordinary issue, 344
self-determined thresholds, 344
unbiased evaluation, melanocytic lesion, 343

Evidence-based pathology and laboratory  
medicine. See Evidence-based medicine 
(EBM)

Evidence evaluation
EBM, quality, 28
external validity, 32

Evidence levels analysis
design suitability, 299
genetic test assessment, 299
randomized controlled trials, 299

Evidence levels (ELs) scheme
EL 3, 197
proposed scale, 198

Experimental design, pathology research
software packages, 142
statistical power analysis, 141

External validity
definition, 32
evidence quality evaluation, 32

F
FDA. See Food and drug administration
Fine needle aspiration (FNA), 226
FNA. See Fine needle aspiration
Food and Drug Administration (FDA), 224
Forest plots

immunohistochemistry, 255
integrated odds ratio, 250
preparation, 248
software computation, 251
stage III thymomas, 258

Funnel plots
heterogeneity, evaluation, 252
homogeneous data, 253
publication bias, 252

G
GEA. See Gene expression array
Gene expression array (GEA)

epistemological concerns
data mining, 136
hypothesis-free data exploration, 136
self-fulfilling prophesy, 137–138

mathematical-statistical problems, HDB
bias-variance dilemma, 131
case-based reasoning (CBR), 135
curse of dimensionality, 135, 136
genomic signal processing, 134
“small sample scenario” problem, 134–135

noisy data, 138
observation studies vs. experimental studies,  

133–134
General linear model (GLM), 52
Genomics, pathology

ACCE and EGAPP, 298
array-comparative hybridization, 303
clinical testing, 297
tools and technologies, 297

GLM. See General linear model
Global Registry of Acute Coronary Events (GRACE), 

310
GRACE. See Global Registry of Acute Coronary Events

H
Halsted procedure, 73
Hazard function, 57
Heat-induced epitope retrieval (HIER), 267
Histogenetic neoplastic kinds (HG-K

Neop
s)

description, 104
ExtnI-CoPeTI

biological variability, 107
clusters, 105–106
constraints, 107–108
peaks, two dimensional phenospace, 107
phenospace clusters, 106

model, Gouldian re-runs, 105
phenospace, domain, 104–105
problem cases

INJS conditions, 109
M-K

Neop
’s (see Managerial neoplastic kinds)

stylized ADF, 109
splitters and lumpers

grid, 108
non-zero probability, 108

Human error, diagnostic pathology
automation, 240
cases review, 241
checklists, 241

I
Immunohistochemistry (IHC)

diagnostic (see Diagnostic immunohistochemistry 
(DIHC))
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evidence-based medicine, 21
prognostic-predictive (see Prognostic-predictive  

immunohistochemistry (PPIHC))
Individually necessary and jointly sufficient (INJS) 

conditions, 109
Individual neoplasm (I

Neop
)

complexity
annotated dendrogram fingerprint (ADF), 101
cellular, 133
characteristics, 98
clones, 100
I

Neop
 vieId, 99

Müllerian neoplasia, 100
neoplastic cells, cancers, 98
normal uterine cervix, 100
organization levels, 98
progression models and lineages, 100
synchronic and diachronic intratumor  

heterogeneity, 99–100
uniqueness, 98–99

context dependency, 101–102
dynamic processes, 102
heterogeneity and evolution, 133
microenvironment, 133
uniqueness, 102

Interanalytical agreement. See Cross-validation of methods
Internal validity, evidence

criteria sets, 28–29
definition, 28
experimental design integrity, 28
ranking system, 28
recency and relevance, 29
statistics, data analyzation

Blackstone’s formulation, 29
Cohen’s kappa, 30
confidence intervals, 30
funnel plot, 31
OR, 29
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Kaplan–Meier plot, 56
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